Statistical Illusion Friendship Paradox

Mentor: Zhaoqi Li
Student: Yeji Sohn

Topic we covered

- Monty hall problem
- Friendship paradox
- Simpson's paradox
- Waiting time paradox
- Certainty and possibility effects
- Limitations in common summary statistics

Question

Do you think you have more, less or same number of friends as your friends on average?

Friendship Paradox

- The paradox that most people have less friends than their friends on average
- Can also be applied to any social networks
- e.g. your twitter followers will have more followers than you do on average
- e.g. your partner will have more partners in the past than you do on average
- e.g. predicting infection in social networks

Examples

- Number of friends A has: 3
- Number of friends A's friends have:
- B: 1
- $\mathrm{C}: 1$
- D: 1
- Total: 3
- Number of friends B has: 1
- Number of friends B’s friends have:
- A:3
- Total: 3
- Number of friends C has: 1
- Number of friends C's friends have:
- A: 3
- Total: 3
- Number of friends D has: 1
- Number of friends D's friends have:
- A: 3
- Total: 3

Mean number of friends each person has: $(3+1+1+1) / 4=1.5$
Mean number of friends each person has:
$(3+3+3+3) / 4=3$

Examples

- Number of friends A has: 3
- Number of friends A's friends have:
- B: 2
- $\mathrm{C}: 2$
- D: 1
- Total: 5
- Number of friends B has: 2
- Number of friends B's friends have:
- A: 3
- $\mathrm{C}: 2$
- Total: 5
- Number of friends C has: 2
- Number of friends C's friends have:
- A: 3
- B: 2
- Total: 5
- Number of friends D has: 1
- Number of friends D's friends have:
- A: 3
- Total: 3

Mean number of friends each person has: $(3+2+2+1) / 4=2$
Mean number of friends each person has:
$(5+5+5+3) / 4=4.5$

Examples

- Number of friends A has: 3
- Number of friends A's friends have:
- B: 3
- C: 3
- D: 3
- Total: 9
- Number of friends B has: 3
- Number of friends B's friends have:
- A: 3
- C: 3
- D: 3
- Total: 9
- Number of friends C has: 3
- Number of friends C's friends have:
- A: 3
- B: 3
- D: 3
- Total: 9
- Number of friends D has: 3
- Number of friends D's friends have:
- A: 3
- B: 3
- C: 3
- Total: 9

Mean number of friends each person has: $(3+3+3+3) / 4=3$
Mean number of friends each person has:
$(9+9+9+9) / 4=9$

Conclusion

n individuals, x_{i} ties
Mean number of friends:

$$
\frac{\Sigma\left(x_{i}\right)}{n}
$$

Mean number of friends' friends:

$$
\frac{\Sigma\left(x_{i}^{2}\right)}{\Sigma\left(x_{i}\right)}
$$

$$
\begin{aligned}
& \sigma^{2}=\frac{\Sigma\left(x_{i}^{2}\right)}{n}-\mu^{2} \\
& \frac{\Sigma\left(x_{i}^{2}\right)}{n}=\sigma^{2}+\mu^{2}
\end{aligned}
$$

$$
\Sigma\left(x_{i}^{2}\right)=\left(\sigma^{2}+\mu^{2}\right) n
$$

Divide each side by $\Sigma\left(x_{i}\right)=\mu n$

$$
\frac{\Sigma\left(x_{i}^{2}\right)}{\Sigma\left(x_{i}\right)}=\frac{\left(\sigma^{2}+\mu^{2}\right) n}{\mu n}=\mu+\frac{\sigma^{2}}{\mu}
$$

Conclusion

- $\mu=\frac{\Sigma\left(x_{i}\right)}{n}, \frac{\Sigma\left(x_{i}^{2}\right)}{\Sigma\left(x_{i}\right)}=\mu+\frac{\sigma^{2}}{\mu}$
- $\mu \leq \mu+\frac{\sigma^{2}}{\mu}$
- Mean number of friends is always equal to or less than mean number of friend's friends
- Mean among friends increases as the variance among individuals increases for a fixed mean number of individual's friends.

Conclusion

- Most people are likely to be within their own friends group. i.e. It is unlikely for a person to be a friend with the one with few friends.
- Friendship is disproportionate: few people have large number of friendship with others, and the others with few.
- For friends' friends, some individuals are counted more than once. The number of friends only includes each individuals once
- Using mean friends' friends number is unfair basis for judging if one has enough friends.
- Other similar paradox: class size paradox

Resources

- Friendship paradox. (2020, December 05). Retrieved December 09, 2020, from https://en.wikipedia.org/wiki/Friendship_paradox
- Feld, S. (1991). Why Your Friends Have More Friends Than You Do. American Journal of Sociology, 96(6), 1464-1477. Retrieved December 9, 2020, from http://www.jstor.org/stable/2781907

