High Dimensional Data Classification

Mentee: Elvin Liu Mentor: Zhaoxing Wu

Overview

- 1. Introduction
- 2. **Background** (Fisher's Linear Discriminant Analysis)
- 3. **Solution** (Penalized Discriminant Analysis Projection Pursuit)
- 4. Analysis

Premise and Motivation

- Classification is predicting labels from a dataset's features
- Prediction algorithms rely on sufficiently *large* sample sizes (n) to train such features (p)

Curse of Dimensionality

Accuracies of classification algorithms tend to dip in high dimensions due to the **curse of dimensionality**

X X X X X

A one-dimensional features space with five data points

A two-dimensional features space with 25 data points

three-dimensional features space with 125 data point

V. Pappu, & P.M. Pardalos. High Dimensional Data Classification. Clusters, Orders and Trees: Methods and Applications. 4

Projection Pursuit

• Seek interesting *low-dimensional* projections

Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large P Small N Data. Statistics and Computing, 20(3), 381–392. 5

Fisher's Linear Discriminant Analysis (LDA)

- Supervised dimensionality reduction
- Reduce dimensions but preserve features relevant for class discrimination

Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large P Small N Data. Statistics and Computing, 20(3), 381–392. 6

Between-Class and Within-Class Scatter Matrices

1. The **between-class** scatter matrix $\mathbf{S}_{\mathbf{B}}$ is computed by the following equation,

$$S_{B} = \sum_{i=1}^{c} N_{i}(\boldsymbol{m}_{i} - \boldsymbol{m})(\boldsymbol{m}_{i} - \boldsymbol{m})^{T}$$

where **m** is the overall mean, and \mathbf{m}_i and \mathbf{N}_i are the sample mean and sizes of the respective classes.

Fisher's LDA

Intuitively, makes sense to *maximize* **between-class** scatter matrix and *minimize* **within-class** scatter matrix.

Fisher's LDA

 $\mathbf{Q}\mathbf{v}=\lambda\mathbf{v}$

where...

- $\boldsymbol{Q} = \boldsymbol{S}_w^{-1} \boldsymbol{S}_B$
- $\mathbf{v} = eigenvector$

 λ = eigenvalue

Eigenvectors of largest eigenvalues *maximize* **between-class/within-class variance** most

k most important eigenvectors of $S_w^{-1}S_B$ are **linear discriminant function**

Projected data trims least important features

$$I_{\text{LDA}}(\mathbf{A}) = \begin{cases} 1 - \frac{|\mathbf{A}^T \mathbf{S}_{\mathbf{w}} \mathbf{A}|}{|\mathbf{A}^T (\mathbf{S}_{\mathbf{w}} + \mathbf{S}_{\mathbf{B}}) \mathbf{A}|}, & \text{for } |\mathbf{A}^T (\mathbf{S}_{\mathbf{w}} + \mathbf{S}_{\mathbf{B}}) \mathbf{A}| \neq 0, \\ 0, & \text{for } |\mathbf{A}^T (\mathbf{S}_{\mathbf{w}} + \mathbf{S}_{\mathbf{B}}) \mathbf{A}| = 0, \end{cases}$$

Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large P Small N Data. Statistics and Computing, 20(3), 381–392. 9

Penalized Discriminant Analysis

n < p leads to data piling issues in LDA

PDA PP-Index

Use $\tilde{\Sigma}(\lambda) = (1 - \lambda)\hat{\Sigma} + \lambda \cdot \text{diag}(\hat{\Sigma})$ to estimate the variance-covariance matrix Σ (hat) = maximum likelihood estimator (MLE) of Σ

Using standardized data vectors, the above equation turns to $\tilde{\mathbf{R}}(\lambda) = (1 - \lambda)\hat{\mathbf{R}} + \lambda \mathbf{I}$, where

R (hat) = MLE of correlation matrix

 $\mathbf{I} = \text{identity matrix}$

PDA PP-Index

$$\boldsymbol{\Sigma}^{\mathbf{B}} = \sum_{i=1}^{g} n_i (\bar{\mathbf{X}}_{i.}^* - \bar{\mathbf{X}}_{..}^*) (\bar{\mathbf{X}}_{i.}^* - \bar{\mathbf{X}}_{..}^*)^T,$$
$$\boldsymbol{\Sigma}^{\mathbf{S}} = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (\mathbf{X}_{ij}^* - \bar{\mathbf{X}}_{i.}^*) (\mathbf{X}_{ij}^* - \bar{\mathbf{X}}_{i.}^*)^T$$
$$\mathbf{X}_{i}^* = i\text{-th group mean of the standardized data and}$$
$$\mathbf{X}_{**}^{\mathbf{S}} = 0 = \text{total mean of the standardized data}$$

$$I_{\text{PDA}}(\mathbf{A}, \lambda) = 1 - \frac{|\mathbf{A}^{T}\{(1-\lambda) \boldsymbol{\Sigma}^{\text{S}} + n\lambda \mathbf{I}_{p}\}\mathbf{A}|}{|\mathbf{A}^{T}\{(1-\lambda) (\boldsymbol{\Sigma}^{\text{B}} + \boldsymbol{\Sigma}^{\text{S}}) + n\lambda \mathbf{I}_{p}\}\mathbf{A}|}$$

Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large P Small N Data. Statistics and Computing, 20(3), 381–392. 12

Example Projections

Histogram on the left is 1-D projection Scatter plot on the right is 2-D projection

Sample Data Background

Sample:

- 18 malignant cancer tumors paired
- 18 normal tissue from the *same patient*

Features:

- 3200 full-length human cDNA
- 3400 expressed sequence tags

Classifier: Malignant Tumor | Normal Tissue

Features (~6600)

7

-	D00003	D00015 D00	102	D00137	D00173		D00265	D00306	÷ D00-
Description	"Human liver cytochrome	P-450 mRNA, complete cds*	"Human prion	protein mRNA, human PrP	27-30 mRNA, complete cds"	"Human lymphot	oxin (LT) mRNA, complete cds"	"Human class I alc	ohol dehydro
Tumor 27	1.9902240632390829		26.370468837	917851		4.668678879082	20941	17.91201656915	1746
Tumor 29	7.1734732092723732		12.507594313	603112		2.49718319733	51564	12.691529524097	7275
Tumor 34	0.65853450319171225		12.841422812	23839		0.473626274493	372235	10.865819302663	3253
Tumor 28	-2.7763564697932877		9.0231585268	281833		9.59201665756	86583	28.457653815381	12
Tumor 35	0.44446402930747431		1.6297014407	940724		-5.2614759984	570361	5.629877704561	3404
Tumor 8	10.222020982249887		9.8812869495	082243		2.989451097542	25206	63.035796057207	7627
Tumor 3	14.886598402409456		20.245773827	27686		-5.44815279462	89319	26.200413188240	0642
Tumor 9	-2.0161903166429043		17.473649410	905171		-1.8416276062	139911	135.75681465395	\$556
Tumor 4	36.299670587041831		21.231882796	194277		-3.45595358178	335747	26.026178911463	3955
Tumor 32	-1.3219976812463907		17.185969856	20308		6.588531104022	26977	41.863259906135	571
Tumor 39	-3.9677947110620218		14.879230166	48258		-7.8834956694	158214	7.6049398628688	874
Tumor 10	0.53250744003636341		19.702775281	345449		-7.08373897459	956756	19.70277528134	5449
Tumor 33	2.6193733526487497		5.2387467052	974994		3.974412085642	25367	36.671226937082	2494
Tumor 5	38.749422772244642		31.506540011	.077423		-8.91530338176	598581	14.485765522334	4448
Tumor 11	8.0498667406096516		3.7566044789	1511706		3.36115827820	6133	13.953102350390	0063
Tumor 6	4.7400030320708568		18.433345124	720002		-4.45764613250	075227	15.53667660512	1144
Tumor 12	1.4133376204569557		52.293491956	907367		0		13.191151124264	4918
Tumor 40	-0.48038976315567256		28.823385789	340353		-0.92846529307	7207204	16.333251947292	2865
Normal 27	5.9930998		54.4827251			-1.9744580		70.8275426	
Normal 29	0.7385694		50.2227205			1.1974120		116.5093260	
Normal 34	0.7437448		44.8726007			0.7795597		118.0075025	
Normal 28	6.5490816		31.7113426			-3.2807549		118.5728464	
Normal 35	8.8752411		14.5807532			-1.2928787		104.6010558	
Normal 8	7.0757083		15.9203438			-0.9075868		41.8646077	
Normal 3	36.2621814		65.8639622			-15.5396633		100.6460545	
Normal 9	3.6570486		28.5249789			2.2941911		81.1864784	
Normal 4	625.7826412		23.6396864			1.2261492		47.2793727	
Normal 32	0.3125257		79.3815404			-11.3866482		137.5113298	

Training/Testing Split

Let's split training/testing in a 70:30 ratio

Original dataset:

36 samples

18 normal tissue/18 tumors

Training dataset:

25 samples

13 normal tissue/**12** tumors

Testing dataset:

11 samples

5 normal tissue/6 tumors

Predic

	Tumor µ		Feature 1	Feature 2		Feature 3		
ctions			2 3			4		
		Normal µ	7	8		9		
	Feature 1		Feature 2		Feature 3			
Tumor 1	1		6		10			
Tumor 2	2		7		11			
Tumor x								
Normal 1	5		5		7			
Normal 2	6		6		8			
Normal y								

Predictions

			Feat	ure 1	Fea	iture 2	2	Feature 3			
ns	Tes Da	st tapoint	3		4	4		5			
			Featu	Feature 1		Feature 2		Feature 3			
	Tu	mor µ	2		3		4				
Ν		rmal µ	7		8		9				
		Feature 1		Feat	ure		Fe				
(Test Datapoint - Normal μ)²		(2 - 7) ²		(3 - 8	8) ²	(4 - 9		9)			
		Feature 1		Feat	ure 2		Feat	e 3			
(Test Datapoint - Tumor μ) ²		(3 - 2) ²		(4 - 3	3) ²	(5 -		- 4) ²			

Notterman, et al, Cancer Research, vol. 61: 2001 17

Predictions

Testing datapoint is classified as **Tumor** since its distance to the **Tumor mean** is *smaller* than to **Normal Tissue's mean**

Prediction Results

2-Dimensional LDA projection of testing data

[1] 0.8181818

2-Dimensional PDA ($\lambda = 0.5$) projection of testing data

[1] 0.9090909

Support Vector Machines

e1071 package Call: svm(formula = classifier ~ ., data = cc 2/5 normal tissues *correctly* classified 3/5 normal tissues *incorrectly* classified as Parameters: SVM-Type: C-classification tumors SVM-Kernel: radial cost: 1 6/6 tumors *correctly* classified Number of Support Vectors: 25 Predicted Actual 0 1 Accuracy: $(2 + 6)/(5 + 6) = 8/11 \approx 72.73\%$ 023 106

Notterman, et al, Cancer Research, vol. 61: 2001 20

References (images)

1201904. "Dimensionality Reduction Techniques Skill Test for Data Scientists (Updated 2023)." Analytics Vidhya, 14 Mar. 2023, www.analyticsvidhya.com/blog/2017/03/questions-dimensionality-reduction-data-scientist/.

Liu, Jian, et al. "Cancer Characteristic Gene Selection via Sample Learning Based on Deep Sparse Filtering." The Differences between Sample Learning and Feature Learning., May 2018, www.researchgate.net/figure/The-differences-between-sample-learning-and-feature-learning-a-A-feature-learning_fig1_325 426703.

Raschka, Sebastian. "Linear Discriminant Analysis." Sebastian Raschka, PhD, 3 Aug. 2014, sebastianraschka.com/Articles/2014_python_lda.html.

Shetty, Badreesh. "What Is the Curse of Dimensionality?" Built In, 19 Aug. 2022, builtin.com/data-science/curse-dimensionality.

Vungarala, Seshu Kumar. "PCA vs Lda-No More Confusion!" Medium, Medium, 30 Apr. 2023, medium.com/@seshu8hachi/pca-vs-lda-no-more-confusion-fc21fb8d06e9#:~:text=PCA%20is%20an%20unsupervised%20 method%20that%20aims%20to%20find%20the,the%20characteristics%20of%20the%20dataset.

References (papers)

Kabacoff, R. (2015). R in Action, 2nd edition, Chapter 17 (ISBN: 9781617291388). Manning Publications Co.

Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large P Small N Data. Statistics and Computing, 20(3), 381–392.

Notterman, et al, Cancer Research vol. 61: 2001

V. Pappu, & P.M. Pardalos. High Dimensional Data Classification. Clusters, Orders and Trees: Methods and Applications.