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Brief Overview: Bayes’ Rule

posterior = 
prior・ likelihood

normalizing constant

Bayesian statistics is built on the method of using prior knowledge along 
with new incoming data in order to develop a posterior understanding.

It is helpful as we can update our beliefs and it is often more 
interpretable than frequentist statistics.



Bayes’ Rule in STAT 311

P(A|B) = 
P(A)P(B|A)

P(B)

Most will recognize Bayes’ Rule in terms of events of A and B.

In introductory classes, Bayesian statistics is often used in examples that 
involve medical testing (such as asking: given my positive test result, 
what’s the chance that I actually have the disease?)



Brief Overview: Bayes’ Rule

In some cases when we use certain priors and likelihoods called conjugate 
priors, we are able to calculate the normalizing constant easily.

However, calculating the normalizing constant can involve large integrals as 
we have to consider all possible outcomes. Due to this, the normalizing 
constant is sometimes omitted:

∝posterior prior・ likelihood



Approximating the Posterior

prior and likelihood are comprised 

of complicated multivariate 

functions.

In this case, instead of specifying 

the posterior, we instead 

approximate the posterior via 

simulation!

While conjugate priors are effective within simple models, they aren’t as 

useful if the posterior is seemingly impossible to identify. Such as when the



Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is a class of algorithms used to sample from 

the posterior probability distribution. 

MCMC simulation produces a chain of dependent samples - these samples are 

not drawn of the posterior pdf. But as long as we have enough samples (N is 

large enough), the simulation will reflect the posterior model.

It is helpful as it is easier to scale up for more complicated Bayesian models, 

unlike other approximation methods such as grid approximation.



Evaluating MCMC Simulations

Simulations cannot all be perfect - in order to tell if a Markov chain is “good”, 

there are a few checks we put in place.

We can utilize trace plots and parallel chain to observe any inconsistencies 

visually. This can show fast-mixing vs slow-mixing - fast mixing is good as it 

exhibits behavior similar to that of an independent sample compared to slow 

mixing which does not explore the range of possible posterior values.

On a numeric level, we can check effect sample size, autocorrelation, and R-hat.



Examples of “Bad” Trace Plots



Examples of a “Good” Trace Plot



Difference between MCMC Algorithms

- Metropolis-Hastings
- An algorithm that goes through an iterative step process in order to 

propose and accept step locations

- Hamiltonian Monte Carlo
- Employed in the rstan package, uses derivatives and allows for an 100% 

acceptance prob.

- Gibbs sampling
- Employed in the rjags package, uses conditional probs. of different 

parameters and also allows for 100% acceptance prob.



Metropolis-Hastings Algorithm

Step 1: Propose a new location
Conditioned on the current location μ, draw a location μ’ from a proposal 

model with pdf q(μ’|μ)

Step 2: Decide whether or not to go there

Calculate the acceptance probability

A(μ, μ’) = min ( )
f(μ’)P(y|μ’)

f(μ)P(y|μ)

q(μ)

q(μ’)
1 ,



Hierarchical Models

Hierarchical models (or multilevel models) are a way to model complex systems 

such as cases when individuals are organized at more than one level

There are limitations in models that are fully pooled or not pooled at all

- Fully pooled models sacrifice independence between samples and can give 

us misleading conclusions

- Models with no pooling doesn’t allow us to observe within-group variability 

or between-group variability



Hierarchical Models

A partial pooled model (as we use in our applied analysis) allows us to see what 

we can be inferred with distinct subgroups as well as how different subgroups 

inform one another - a big advantage of Bayesian inference!



Applied Analysis: Mental Health Medication in the US

We looked at a dataset from Kaggle that reports on mental health following 

the COVID-19 pandemic within the US.

There were 4 indicators - we chose to look at the percentage of individuals 

who reported taking medication for mental health in the past 4 weeks.



y it itS

μ i

θ τ

σρ λ

Data (from sample)

Parameters
(population)

Hyperparameters

y
it
~ N(μ  , S  )

i it

2

is the likelihood

μi ~ N(θ, τ )2

is the prior

θ ~ N(ρ, σ )2

τ ~ exp(λ)
are hyperpriors



Our Model in R

We implemented our model 

using the rstan package - this 

stan file encompasses the 

partial pooled hierarchical 

model pictured previously.



Unadjusted State Means (Sep 16 - Sep 28, 2020)



Adjusted State Means (Sep 16 - Sep 28, 2020)



Unadjusted & Adjusted State Means (Sep 16 - Sep 28, 2020)



Unadjusted & Adjusted State Means (Aug 19 - Sep 28, 2020)



Unadjusted & Adjusted State Means (Aug 19, 2020 - Mar 1, 2021)



Thank you for listening!

Any questions or comments?



Credits

● Dataset from Kaggle → U.S. Household Mental Health and COVID-19

○ Data comes from US Open Data Portal

● Johnson, Alicia A., et al. Bayes Rules! An Introduction to Applied Bayesian 

Modeling (2021)

https://www.kaggle.com/datasets/thedevastator/u-s-household-mental-health-covid-19
https://data.world/datagov-us

