# Similarity Metrics in Networks 

Mentee: Samuel Hsu, Mentor: Vydhourie Thiyageswaran

## Table of Contents

- Basics of Graphs and Matrices
- Random Walks
- Similarity Metrics


# Basics of Graphs and Associated Matrices 

## Graphs

- Encyclopaedia Britannica: A graph is a network of points connected by lines
- The points in a graph are vertices or nodes while the lines are edges
- Wikipedia: A graph is a mathematical structure used to model pairwise relations between objects.
- Spielman: Graphs are used to model connections between things
- Graph edges can sometimes have weights and directions
- Every vertex has a degree: in an unweighted graph, it's the number of edges connected to a vertex, and in a weighted graph, it's the sum of all of the edge weights connected to a vertex
- Examples of graphs include friendship graphs, network graphs, and circuit graphs


## Graphs



User:AzaToth, Public domain, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:6n-graf.svg

## Goal:

In some network or graph of "things", find some way to calculate the similarity between different "things" and group "things" together.

## Matrices Associated with Graphs

Common matrices associated with graphs include:

- The adjacency matrix (A)
- The degree matrix (D)
- The graph Laplacian matrix $(\mathbf{L}=\mathbf{D}-\mathbf{A})$

Don't worry if you don't know matrices or linear algebra (take Math 208 to learn about them); just treat matrices as "tables of numbers" for now.

## Example



## Example (continued)

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{D} & =\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

## Example (continued)

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}=\left(\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 2 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right)
$$

## Graph Laplacian

- A graph function maps each vertex to a number.
- The graph Laplacian helps measure the "smoothness" of a graph function
- a graph function is smooth if the function doesn't jump too dramatically between connected vertices
- The smoothness of a function is given by $\mathbf{f}^{T} \mathbf{L} \mathbf{f}$ where $\mathbf{f}$ is a column vector representing the value of our graph function at every vertex
- This is equivalent to $\sum_{u \sim v} w_{u v}(f(u)-f(v))^{2}$
- Smooth functions should minimize this expression

From Daniel Spielman, Muni Sreenivas Pydi, and Matthew Bernstein

## Graph Laplacian



From Matthew N. Bernstein at https://mbernste.github.io/posts/laplacian_matrix/

## Random Walks on Graphs

## Random Walks

A random walk on a graph can be understood as follows:

- Imagine you are "standing" at a vertex of a graph
- The next moment, you decide to randomly walk to another vertex
- You repeat this random process a few times.
- The path you take is a random walk.
- In an unweighted graph, you have an equal chance of walking along each edge
- In a weighted graph, you don't; more strongly-weighted edges are more likely to be walked along
- More similar vertices are connected by more high-weight edges
- Less similar vertices are connected by fewer edges that are lower in weight


## Random Walks



Jgn1055, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Random_Walk_Simulator.gif

## Random Walks

- The sequence of nodes visited by a random walker is a random walk
- Random variable $s(t)$ contains the current location of walker
- $s(t)=i$ means that a walker is at position $i$ at time $t$
- The probability that the walker visits a neighboring node $j$ at time $t+1$ given that they were just at node $i$ at time $t$ is $P(s(t+1)=j \mid s(t)=i)$
(I've left out most of the information on Markov Chains for simplicity's sake; these are helpful for a more complete description of random walks)


## Similarity Metrics

## Overview

Metrics for computing the similarity between two vertices include:

- the average first passage time $m(k \mid i)$
- the average first passage cost $o(k \mid i)$
- the pseudoinverse of the graph Laplacian $\mathbf{L}^{+}$
- the average commute time $n(i, j)$
- the Euclidean Commute Time Distance $[n(i, j)]^{\frac{1}{2}}$


## GOa!

In some network of "things", find some way to calculate the similarity between "things" and group "things" together

Example: Imagine some database of people and some movies they've watched recently.

- "Computing similarities between people allows us to cluster them into groups with similar interest about watched movies."
- "Computing similarities between people and movies allows us to suggest movies to watch or not to watch."
- "Computing similarities between people and movie categories allows us to attach a most relevant category to each person."

From Fouss et al.

## Pseudoinverse of the Laplacian

- Not all matrices are invertible (including the Graph Laplacian)
- The Moore-Penrose pseudoinverse generalizes the idea of an inverse matrix
- The pseudoinverse of the Laplacian is calculated as follows:
- $\mathbf{L}^{+}=\left(\mathbf{L}-\frac{\mathbf{e e}^{T}}{n}\right)^{-1}+\frac{\mathbf{e e}^{T}}{n}$
- $\mathbf{e}$ is the all-ones vector, and $n$ is the number of nodes
- It's a similarity matrix (the similarity of two vertices $i$ and $j$ can be found by looking at the $i$ th row and $j$ th column of $L^{+}$)
- It's also used to calculate some of the remaining quantities


## Average First-Passage Time

- The average first passage time is $m(k \mid i)$
- Defined as the average number of steps that a random walker at node $i$ takes to visit node $k$
- One way to think about it: $m(k \mid i)=E\left[T_{i k} \mid s(0)=i\right]$
- The expected value of the minimum time of hitting state $k$ if you start at state $i$
- Defined using these formulas:
- $\left\{\begin{array}{l}m(k \mid k)=0 \\ m(k \mid i)=1+\sum_{j=1}^{n} p_{i j} m(k \mid j)\end{array}\right.$
- $m(k \mid i)=\sum_{j=1}^{n}\left(l_{i j}^{+}-l_{i k}^{+}-l_{k j}^{+}+l_{k k}^{+}\right) d_{j j}$
- Computed from the pseudoinverse of the Laplacian


## Average First-Passage Cost

- The average first passage cost is $o(k \mid i)$
- Say a random walker incurs a cost $c(j \mid i)$ if they walk from $i$ to some neighboring vertex $j$
- Defined as the average cost a random walker incurs if they want to visit any node $k$ from node $i$
- Defined using these formulas:
- $\left\{\begin{array}{l}o(k \mid k)=0 \\ o(k \mid i)=\sum_{j=1}^{n} p_{i j} c(j \mid i)+\sum_{j=1}^{n} p_{i j} o(k \mid j)\end{array}\right.$
- $o(k \mid i)=\sum_{j=1}^{n}\left(l_{i j}^{+}-l_{i k}^{+}-l_{k j}^{+}+l_{k k}^{+}\right) b_{j}$
- Computed from the pseudoinverse of the Laplacian


## Average Commute Time

- "Symmetric" version of the average first-passage time
- $n(i, j)=m(i \mid j)+m(j \mid i)$
- Sum of the average-first passage times in both directions between $i$ and $j$
- Calculated using the following formulas:
- $n(i, j)=m(i \mid j)+m(j \mid i)$
- $n(i, j)=V_{G}\left(l_{i i}^{+}+l_{j j}^{+}-2 l_{i j}^{+}\right)$
- $l_{a b}^{+}$is an element of the matrix $\mathbf{L}^{+}$
- $V_{G}$, the volume of the graph, is the sum of all of the degrees
- $n(i, j)=V_{G}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \mathbf{L}^{+}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)$
- $\mathbf{e}_{i}$ is a standard basis vector (like $<1,0, \ldots, 0>$ or $<0,1, \ldots, 0>$ )


## Average Commute Time

- Interesting tidbit about the average commute time:
- We can treat graphs like networks of electrical resistors
- (Resistors resist the flow of electrical current)
- The average commute time is proportional to the effective resistance between the two vertices of the corresponding resistor network
- The weight of each edge is the inverse of the resistance
- $r_{i j}=w_{i j}^{-1}$
- Low resistance = high weight, lots of electrical current flows through
- Average commute time is also known as the "commute-time distance" or the "resistance distance"


## Euclidean Commute Time Distance

- The Euclidean Commute Time Distance is defined as $[n(i, j)]^{\frac{1}{2}}$
- Here's what's interesting:
- You can define vectors that correspond to each node called transformed node vectors using this formula: $\mathbf{x}_{i}^{\prime}=\boldsymbol{\Lambda}^{\frac{1}{2}} \mathbf{U} \mathbf{e}_{i}$
- $\mathbf{U}$ contains the eigenvectors of $\mathbf{L}^{+}$while $\boldsymbol{\Lambda}$ is a diagonal matrix with the eigenvalues
- Procedure for obtaining node vectors comes from the spectral decomposition of the pseudoinverse of the Laplacian
- The distance between the transformed node vectors is exactly the Euclidean Commute Time Distance
- Inner products of the node vectors give you the elements of the pseudoinverse of the Laplacian matrix.
- Principal Component Analysis gives you lower-dimensional transformed node vectors that are still roughly separated by the Euclidean Commute Time Distance


## Node Vectors of a Graph

The node vectors here appear to be equidistant from one another; this lines up with the observations that all of the edges have the same weight, and all nodes are equidistant.



## Recap and Conclusion

## Graphs and Matrices

- A graph is used to model connections between things and is depicted as a network of vertices connected by edges
- Matrices associated with the graph include the adjacency, degree, and graph Laplacian matrix
- The Graph Laplacian measures the smoothness of a function over a graph


## Random Walks

- If you stand on a vertex and start randomly walking to nearby vertices, the path you take is a random walk
- Edges with greater weights have a greater probability of being walked to
- Random variable $s(t)$ contains the current location of walker
- $s(t)=i$ means that a walker is at position $i$ at time $t$
- The probability that the walker visits a neighboring node $j$ at time $t+1$ given that they were just at node $i$ at time $t$ is $P(s(t+1)=j \mid s(t)=i)$


## Similarity Metrics

Metrics for computing the similarity between two vertices include:

- the average first passage time $m(k \mid i)$
- the average first passage cost $o(k \mid i)$
- the pseudoinverse of the graph Laplacian
- used to calculate the remaining quantities
- the best similarity metric
- the average commute time $n(i, j)$
- proportional to effective resistance
- the Euclidean Commute Time Distance $[n(i, j)]^{\frac{1}{2}}$
- transformed node vectors are separated by this distance


## Similarity Metrics

The goal of these similarity metrics is to group "things" together.

Recall the movie example: We now can calculate metrics that let us recommend movies to users and group similar users together

## Sources:

- Spectral and Algebraic Graph Theory by Daniel Spielman
- Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation by Fouss et al.
- Quora post on the Graph Laplacian by Muni Sreenivas Pydi
- Cross Validated post on Principal Component Analysis by amoeba
- Post on the Graph Laplacian by Matthew Bernstein
- Linear Algebra with Applications by Jeffrey Holt
- Basics of Applied Stochastic Processes by Richard Serfozo
- OpenStax University Physics, Volume 2
- Optimization Models by Laurent El Ghaoui

