
Similarity Metrics in
Networks

Mentee: Samuel Hsu, Mentor: Vydhourie Thiyageswaran

Table of Contents
Basics of Graphs and Matrices

Random Walks

Similarity Metrics

Basics of Graphs and
Associated Matrices

Graphs
Encyclopaedia Britannica: A graph is a network of points connected by lines

The points in a graph are vertices or nodes while the lines are edges

Wikipedia: A graph is a mathematical structure used to model pairwise relations
between objects.

Spielman: Graphs are used to model connections between things

Graph edges can sometimes have weights and directions

Every vertex has a degree: in an unweighted graph, it’s the number of edges connected
to a vertex, and in a weighted graph, it’s the sum of all of the edge weights connected to
a vertex

Examples of graphs include friendship graphs, network graphs, and circuit graphs

Graphs

User:AzaToth, Public domain, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:6n-graf.svg

https://commons.wikimedia.org/wiki/File:6n-graf.svg

Goal:
In some network or graph of “things”, find some way to
calculate the similarity between different “things” and group
“things” together.

Matrices Associated with Graphs
Common matrices associated with graphs include:

The adjacency matrix ()

The degree matrix ()

The graph Laplacian matrix ()

Don’t worry if you don’t know matrices or linear algebra (take
Math 208 to learn about them); just treat matrices as “tables of
numbers” for now.

A

D

L = D − A

Example

1 2

3

4

Example (continued)

A =

⎛

⎝

⎜⎜⎜

0

1

0

1

1

0

1

1

0

1

0

1

1

1

1

0

⎞

⎠

⎟⎟⎟

D =

⎛

⎝

⎜⎜⎜

2

0

0

0

0

3

0

0

0

0

2

0

0

0

0

3

⎞

⎠

⎟⎟⎟

Example (continued)

L = D − A =

⎛

⎝

⎜⎜⎜

2

−1

0

−1

−1

3

−1

−1

0

−1

2

−1

−1

−1

−1

3

⎞

⎠

⎟⎟⎟

Graph Laplacian
A graph function maps each vertex to a number.

The graph Laplacian helps measure the “smoothness” of a graph function

a graph function is smooth if the function doesn’t jump too dramatically between
connected vertices

The smoothness of a function is given by where is a column vector representing
the value of our graph function at every vertex

This is equivalent to

Smooth functions should minimize this expression

From , , and

Lff
T

f

(f(u) − f(v)∑u∼v wuv)2

Daniel Spielman Muni Sreenivas Pydi Matthew Bernstein

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://qr.ae/pKgj6B
https://mbernste.github.io/posts/laplacian_matrix/

Graph Laplacian

From Matthew N. Bernstein at https://mbernste.github.io/posts/laplacian_matrix/

https://mbernste.github.io/posts/laplacian_matrix/

Random Walks on
Graphs

Random Walks
A random walk on a graph can be understood as follows:

Imagine you are “standing” at a vertex of a graph

The next moment, you decide to randomly walk to another vertex

You repeat this random process a few times.

The path you take is a random walk.

In an unweighted graph, you have an equal chance of walking along each edge

In a weighted graph, you don’t; more strongly-weighted edges are more likely to be
walked along

More similar vertices are connected by more high-weight edges

Less similar vertices are connected by fewer edges that are lower in weight

Random Walks

Jgn1055, CC BY-SA 4.0 , via Wikimedia
Commons,

https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Random_Walk_Simulator.gif

https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Random_Walk_Simulator.gif

Random Walks
The sequence of nodes visited by a random walker is a random walk

Random variable contains the current location of walker

 means that a walker is at position at time

The probability that the walker visits a neighboring node at time given that they
were just at node at time is

(I’ve left out most of the information on Markov Chains for simplicity’s sake; these are
helpful for a more complete description of random walks)

s(t)

s(t) = i i t

j t + 1
i t P(s(t + 1) = j|s(t) = i)

Similarity Metrics

Overview
Metrics for computing the similarity between two vertices
include:

the average first passage time

the average first passage cost

the pseudoinverse of the graph Laplacian

the average commute time

the Euclidean Commute Time Distance

m(k|i)

o(k|i)

L
+

n(i, j)

[n(i, j)]
1
2

Goal:
In some network of “things”, find some way to calculate the similarity between “things”
and group “things” together

Example: Imagine some database of people and some movies they’ve watched recently.

“Computing similarities between people allows us to cluster them into groups with
similar interest about watched movies.”

“Computing similarities between people and movies allows us to suggest movies to
watch or not to watch.”

“Computing similarities between people and movie categories allows us to attach a
most relevant category to each person.”

From Fouss et al.

https://ieeexplore.ieee.org/document/4072747

Pseudoinverse of the Laplacian
Not all matrices are invertible (including the Graph Laplacian)

The Moore-Penrose pseudoinverse generalizes the idea of an inverse matrix

The pseudoinverse of the Laplacian is calculated as follows:

 is the all-ones vector, and is the number of nodes

It’s a similarity matrix (the similarity of two vertices and can be found by looking at
the th row and th column of)

It’s also used to calculate some of the remaining quantities

= +L
+ (L −)ee

T

n

−1
ee

T

n

e n

i j

i j L+

Average First-Passage Time
The average first passage time is

Defined as the average number of steps that a random walker at node takes to visit
node

One way to think about it:

The expected value of the minimum time of hitting state k if you start at state i

Defined using these formulas:

Computed from the pseudoinverse of the Laplacian

m(k|i)

i

k

m(k|i) = E[|s(0) = i]Tik

{
m(k|k) = 0

m(k|i) = 1 + m(k|j)∑n
j=1 pij

m(k|i) = (− − +)∑n
j=1 l+ij l+ik l+kj l+kk djj

Average First-Passage Cost
The average first passage cost is

Say a random walker incurs a cost if they walk from to some neighboring vertex

Defined as the average cost a random walker incurs if they want to visit any node from
node

Defined using these formulas:

Computed from the pseudoinverse of the Laplacian

o(k|i)

c(j|i) i

j

k

i

{ o(k|k) = 0

o(k|i) = c(j|i) + o(k|j)∑n
j=1 pij ∑n

j=1 pij

o(k|i) = (− − +)∑n
j=1 l+ij l+ik l+kj l+kk bj

Average Commute Time
“Symmetric” version of the average first-passage time

Sum of the average-first passage times in both directions between and

Calculated using the following formulas:

 is an element of the matrix

, the volume of the graph, is the sum of all of the degrees

 is a standard basis vector (like or)

n(i, j) = m(i|j) + m(j|i)

i j

n(i, j) = m(i|j) + m(j|i)

n(i, j) = (+ − 2)VG l+ii l+jj l+ij

l+ab L
+

VG

n(i, j) = (−)VG(−)ei ej
T

L
+

ei ej

ei < 1, 0, … , 0 > < 0, 1, … , 0 >

Average Commute Time
Interesting tidbit about the average commute time:

We can treat graphs like networks of electrical resistors

(Resistors resist the flow of electrical current)

The average commute time is proportional to the effective resistance between the two
vertices of the corresponding resistor network

The weight of each edge is the inverse of the resistance

Low resistance = high weight, lots of electrical current flows through

Average commute time is also known as the “commute-time distance” or the
“resistance distance”

=rij w−1
ij

Euclidean Commute Time Distance
The Euclidean Commute Time Distance is defined as

Here’s what’s interesting:

You can define vectors that correspond to each node called transformed node

vectors using this formula:

 contains the eigenvectors of while is a diagonal matrix with the
eigenvalues

Procedure for obtaining node vectors comes from the spectral decomposition of
the pseudoinverse of the Laplacian

The distance between the transformed node vectors is exactly the Euclidean
Commute Time Distance

Inner products of the node vectors give you the elements of the pseudoinverse of the
Laplacian matrix.

Principal Component Analysis gives you lower-dimensional transformed node vectors
that are still roughly separated by the Euclidean Commute Time Distance

[n(i, j)]
1
2

= Ux′
i Λ

1
2 ei

U L
+

Λ

Node Vectors of a Graph
The node vectors here appear to be equidistant from one another; this lines up with the
observations that all of the edges have the same weight, and all nodes are equidistant.

Left: From MATLAB, Right: From Math3D

Recap and Conclusion

Graphs and Matrices
A graph is used to model connections between things and is
depicted as a network of vertices connected by edges

Matrices associated with the graph include the adjacency,
degree, and graph Laplacian matrix

The Graph Laplacian measures the smoothness of a function
over a graph

Random Walks
If you stand on a vertex and start randomly walking to nearby vertices, the path you
take is a random walk

Edges with greater weights have a greater probability of being walked to

Random variable contains the current location of walker

 means that a walker is at position at time

The probability that the walker visits a neighboring node at time given that they
were just at node at time is

s(t)

s(t) = i i t

j t + 1
i t P(s(t + 1) = j|s(t) = i)

Similarity Metrics
Metrics for computing the similarity between two vertices include:

the average first passage time

the average first passage cost

the pseudoinverse of the graph Laplacian

used to calculate the remaining quantities

the best similarity metric

the average commute time

proportional to effective resistance

the Euclidean Commute Time Distance

transformed node vectors are separated by this distance

m(k|i)

o(k|i)

n(i, j)

[n(i, j)]
1
2

Similarity Metrics
The goal of these similarity metrics is to group “things”
together.

Recall the movie example: We now can calculate metrics that
let us recommend movies to users and group similar users
together

Sources:
Spectral and Algebraic Graph Theory by Daniel Spielman

Random-Walk Computation of Similarities between Nodes of a Graph with Application
to Collaborative Recommendation by Fouss et al.

Quora post on the Graph Laplacian by Muni Sreenivas Pydi

Cross Validated post on Principal Component Analysis by amoeba

Post on the Graph Laplacian by Matthew Bernstein

Linear Algebra with Applications by Jeffrey Holt

Basics of Applied Stochastic Processes by Richard Serfozo

OpenStax University Physics, Volume 2

Optimization Models by Laurent El Ghaoui

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://ieeexplore.ieee.org/document/4072747
https://ieeexplore.ieee.org/document/4072747
https://qr.ae/pKgj6B
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://mbernste.github.io/posts/laplacian_matrix/
https://store.macmillanlearning.com/us/product/Linear-Algebra-with-Applications-2nd-edition/p/1464193347
http://www.stat.yale.edu/~jtc5/251/readings/Basics%20of%20Applied%20Stochastic%20Processes_Serfozo.pdf
https://openstax.org/details/books/university-physics-volume-2
https://inst.eecs.berkeley.edu/~ee127/sp21/livebook/l_sym_sed.html

