Biomarkers for ovarian cancer

Mentee: Yuning Hu Mentor: Antonio Olivas

If we don't have any symptom, how would we know whether

we're having cancer?

We need a screening test!

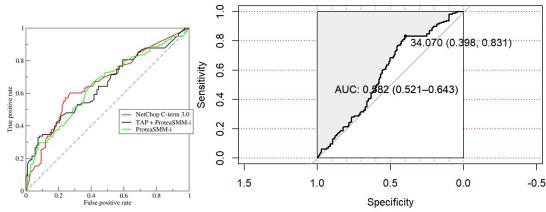
Biomarkers

- Biological markers
- Continuous value
- Objective indications of medical state
- Can be measured accurately and reproducibly

• E.g. hemoglobin A1c (HbA1c) for diabetes

doi: 10.1097/COH.0b013e32833ed177

Binary test

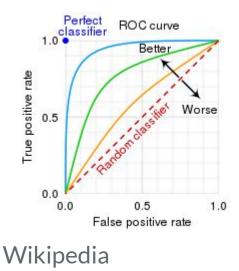

	Disease	Non-disease
Test: Positive	True Positive	False Positive
Test: Negative	False Negative	True Negative

- Sensitivity = TP/(TP+FN) Test positive -> predict having the disease
- Specificity = TN/(TN + FP) Test negative -> predict not having the disease
- Null hypothesis: not having the disease
- Alternative hypothesis: having the disease
- 1 Sensitivity = Type 2 Error
- 1 Specificity = Type 1 Error

How good a biomarker is?

ROC

- Receiver operating characteristic
- graphical plot that illustrates the performance of a biomarker at varying threshold values
- Fix a cutoff -> binary test
- True positive rate v.s. False positive rate
- Sensitivity v.s. 1 Specificity


Wikipedia

If more than 1 biomarker, which one is better?

AUC

- area under the curve
- mathematically, it's integration
- expected value of performance of a biomarker
- higher AUC -> averagely, better performance

- Useless TPF = FPF
- => AUC = 0.5

If we have a biomarker, how to get the threshold differentiating disease & non-disease?

Cutoff

- ROC: cutoff
- Standard approach:
- penalize FNF (Type 2 Error), FPF (Type 1 Error) equally
- Minimizing (1 Sensitivity) +(1 Specificity)
- => Minimizing (Type 2 Error) +(Type 1 Error)

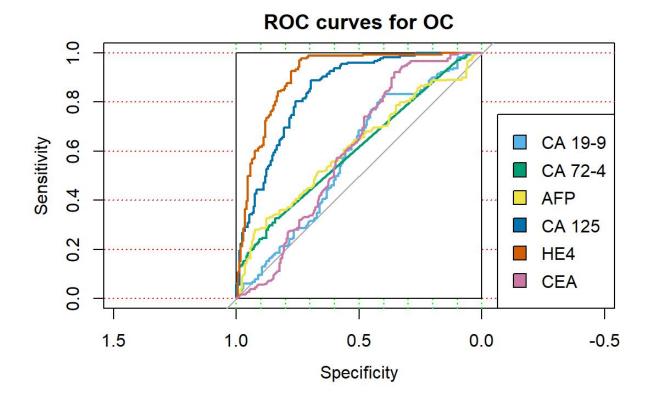
Would you rather Have a disease but doctor says you don't, or Don't have a disease but doctor says you have

Why modify the method for finding cutoff?

- Minimizing 1.5* (1 Sensitivity) + (1 Specificity)
- => Minimizing 1.5* (Type 2 Error) + (Type 1 Error)

Ovarian Cancer

Ovarian Cancer


- Common: 1/75 people who have ovary
- Serious: undetected until late stage, fatal
- Diagnosis:
- Imaging expensive
- Biopsy very expensive, invasive
- Blood test relatively affordable

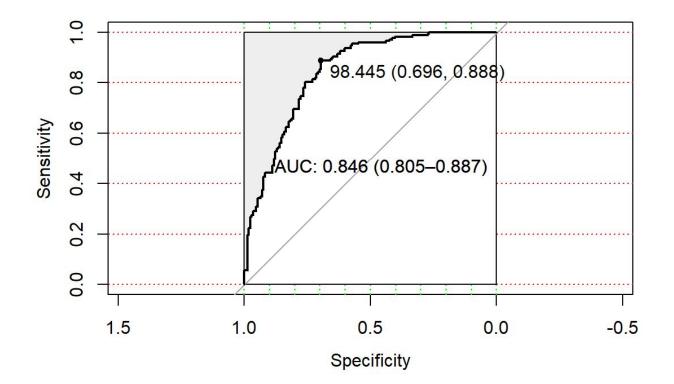
Data

- obtained from 349 patient with tumor
- CA19-9: most commonly used for ovarian cancer
- CA72-4: most commonly used for gastric cancer
- AFP: related to cancer of the liver, ovaries or testicle
- CA125: related to ovarian cancer
- HE4: significant increase of HE4 for epithelial ovarian cancer
- CEA: certain types of cancer can increase your CEA levels, but you can have high CEA without having cancer

doi: 10.3390/jpm12081211

ROCs

Compare: DeLong


- The roc of HE4 has the highest AUC
- The roc of CA125 is the only one that has a relatively small difference with the roc of HE4

Compare	P-value
HE4 v.s. CA19-9	2.2e-16
HE4 v.s. CA72-4	2.2e-16
HE4 v.s. AFP	2.2e-16
HE4 v.s. CA125	0.002019
HE4 v.s. CEA	2.2e-16

ROC: HE4

ROC: CA125

Downsides of HE4

- Expensive (400+ \$ v.s. 200-\$)
- Not available in most institutions

We choose HE4 and CA125!

HE4 cutoff

- Original: 70.73
- Modified: 71.44

• Other researchers from different countries found the same result of 70.

CA125 cutoff

- Original: 98.445
- Modified: 98.445

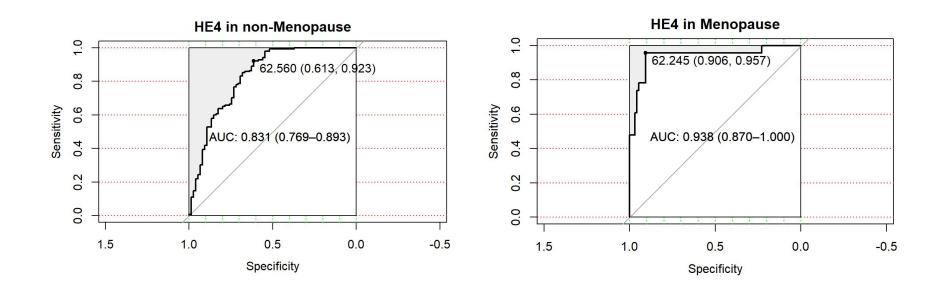
• Cutoff provided by manufacturer: 35

Determined from distribution in healthy individuals to include 99% of the normal population. Shih M, et al.Tumor Markers: Physiology, Pathobiology, Technology and Clinical Applications. Washington, DC: AACC Press; 2002. 239-52.

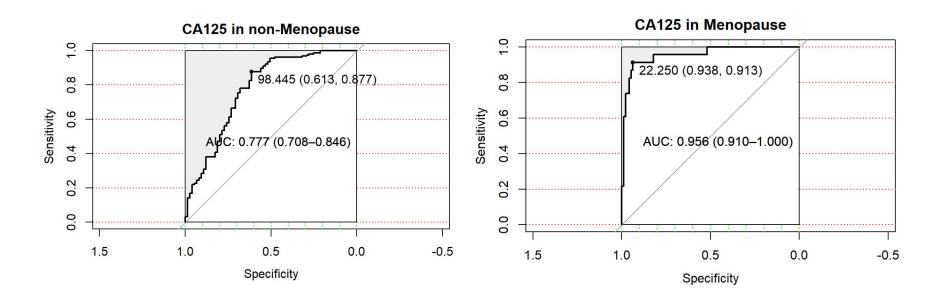
Conclusion for this case

- HE4 is the best biomarker.
- For more affordable option, use CA125
- Extension:
- Study more data to get a cutoff with less error
- Explore if optimal biomarker & threshold depends on other individual characteristics such as age and menopause state

General Conclusion


Conclusion

- ROC: Tool easy to understand
- Common, but there could be otherways
- Extension: combine biomarkers to a score, holistic view (e.g. age, sex)


Thank you

Further cutoff

