Similarity Metrics in Networks

Mentee: Samuel Hsu, Mentor: Vydhourie Thiyageswaran

2023-12-15

Introduction

This will be a brief overview of the basics of graph theory, resistor network analysis, and
random walks. The ultimate goal is to find similarity metrics that can be used to compute
similarities between different nodes in a graph and group them together.

Some quick notes: This writeup was adapted from a presentation I gave on this topic, so the
wording and presentation of topics will be very similar. Also, most of this writeup comes
from my reading of Random-Walk Computation of Similarities between Nodes of a Graph with
Application to Collaborative Recommendation by Fouss et al. and the textbook Spectral and
Algebraic Graph Theory by Daniel Spielman.

Graph Theory

This first section will be devoted to untangling the idea of a graph.

The Encyclopedia Britannica defines a graph as “a network of points connected by lines”, while
Wikipedia defines them as “mathematical structures used to model pairwise relations between
objects”. In other words, the purpose of this network of points is to “model connections between
things”, according to Spielman. For example, imagine a social media app. You can think of a
social media site as a graph: all of the different people on that social media site are represented
by different points, and all of the different “friendships” on that site are represented by the
lines connecting those points. (A friendship graph is one of Spielman’s examples.)

Note that the points in a graph are called vertices or nodes, while the lines in a graph are
called edges. Edges can have different weights and directions, in some scenarios. A weighted
graph is one where all edges have some weight associated with them, and a directed graph is
one where all edges have a directiion.

The degree of a node is the number of edges connected to it in an unweighted graph. In a
weighted graph, it’s the sum of all of the weights of the edges connected to the node.



Here’s a picture of a graph:

&)
pScE

Figure 1: User:AzaToth, Public domain, via Wikimedia Commons, https://commons.wikime
dia.org/wiki/File:6n-graf.svg

An important aspect of graphs is finding ways to compute how similar two nodes are (in order
to group different nodes together). Much of this write-up will be focused on building up the
knowledge needed to compute similarity metrics for nodes on a graph.

Matrices Associated with Graphs

One way we can analyze graphs is by associating each graph with some matrices. We first
need to number our vertices. The adjacency matrix A tells you how all of the vertices are
connected. If each row and column corresponds to a vertex, than any individual entry in that
matrix corresponds to some pair of vertices. An entry takes the value 1 if there is an edge
connecting those vertices, and a 0 if there isn’t.

The degree matrix D tells you the degree of every vertex. The only nonzero entries occur when
the row and the column are the same number; in other words, the only nonzero entries don’t
look at pairs of nodes, but only one node. The entry associated with a node is the nodes’s
degree.

The Laplacian matrix (L = D — A) is computed by finding the difference between the degree
and adjacency matrices. It measures the smoothness of a graph function, which is a function
that maps each vertex to a number. A graph function is smooth if the function doesn’t jump
too dramatically between connected vertices.

Below is a picture of a graph and an associated graph function:

f(B)
F(D)
f&

f(4)

Figure 2: From Matthew N. Bernstein at https://mbernste.github.io/posts/laplacian__matrix/


https://commons.wikimedia.org/wiki/File:6n-graf.svg
https://commons.wikimedia.org/wiki/File:6n-graf.svg
https://mbernste.github.io/posts/laplacian_matrix/

The smoothness of a function is given by f7 Lf where f is a column vector representing the
value of our graph function at every vertex. Another way of writing this is > w,,(f(u) —
f(v))?: the sum of all of the squared differences between the graph function for every pair of
neighboring nodes. Smooth functions should minimize this expression.

(For those of you familiar with multivariable calculus, the graph Laplacian is the discrete ver-
sion of the Laplacian operator on a function: the divergence of the gradient of a multivariable
function. In a sense, this graph Laplacian acts as a sort of “second derivative” for the graph
function).

Keep this idea of the graph Laplacian in your mind; it’ll be important for computing various
similiarity metrics.

Resistor Networks

Graphs can be used to analyze electrical circuits. In particular, we can analyze resistor net-
works, which are simply a collection of electrical resistors. The idea of the effective resistance
between two points will be important for computing similarity metrics later.

Let’s first start by defining some terms related to electrical circuits: - Current (I): the rate
charge flows at, measured in amperes or amps - Voltage (V): how much some charge has to
be “pushed” to get through some element of a circuit, measured in volts - Resistance (R): a
property of an element of a circuit that resists the flow of current, measured in ohms

These three quantities are connected via Ohm’s Law, which says that the voltage across a
resistor is equal to the product of its resistance and the current flowing through it, or V- = I R.

To understand this, consider a battery powering a lightbulb. If the lightbulb resists the flow
of current a lot, the battery has to push harder to get more current across the lightbulb.

Below is a fun little cartoon illustrating the idea:

Figure 3: From https://makeabilitylab.github.io/physcomp/electronics/electricity-basics.htm
1


https://makeabilitylab.github.io/physcomp/electronics/electricity-basics.html
https://makeabilitylab.github.io/physcomp/electronics/electricity-basics.html

A network of resistors can be analyzed using graphs and the tools of graph theory. We can
imagine the points where different resistors “meet up” to be nodes, while each resistor is an
edge. Since current flows differently through different resistors (and along different edges),
we can make this graph a weighted graph. An edge or a resistor with high weight should
have a lot of current flowing through it, and will thus have a lower resistance. An edge or
a resistor with low weight should have less current flowing through it, and will thus have a
higher resistance.

Random Walks

One more concept we have to discuss before exploring similarity metrics is the idea of a random
walk on a graph.

Imagine you are “standing” at a vertex of a graph. The next moment, you decide to randomly
walk to another neighboring vertex, and you repeat this process of randomly walking to other
vertices a few times. The path you take is called a random walk.

If you're walking along an unweighted graph, when you stand at a node, you have an equal
probability of walking to each one of your current node’s neighbors. In a weighted graph, you
have a higher probability of walking along higher-weighted edges. In general, more similar
nodes will have more edges connecting them that are higher in weight, while less similar nodes
will have fewer edges connecting them that are lower in weight.

The random variable s(t) contains the current location of the walker, and the equation s(t) = i
means that a walker is at position ¢ at time ¢. The probability that the walker visits a
neighboring node j at time ¢ + 1 given that they were just at node i at time ¢ is P(s(t +1) =
jls(t) = 4).

To more thoroughly understand the idea of the random walk, we need to develop a tool known
as a Markov chain. p is a vector of probabilities that tells you how likely a random walker is
to be at any node. As random walkers take steps to nearby nodes, the probability of being
at a specific node changes over time, and so the vector p changes over time. As the vector p
changes, the chain of p vectors over time is called a Markov chain. To see how the p vector
changes over time, multiply it by the transition or random-walk matrix W = AD .

I’'m barely skimming the surface with this description, but we finally have the tools we need
to tackle our goal of computing similarity metrics in graphs.



Similarity Metrics

Here are some similarity metrics for vertices on a graph, as listed by Fouss et al.:

o the average first passage time m(k|i)

« the average first passage cost o(k|i)

 the pseudoinverse of the graph Laplacian L*
 the average commute time n(i, j)

o the Euclidean Commute Time Distance [n(i, j)]

[SIE

The ultimate goal of these similarity metrics is to find ways to group similar vertices together.
This is important for recommendation algorithms. As an example, imagine some database of
people and some movies they’ve watched recently. (This example comes from the paper by
Fouss et al.):

o “Computing similarities between people allows us to cluster them into groups with similar
interest about watched movies.”

e “Computing similarities between people and movies allows us to suggest movies to watch
or not to watch.”

e “Computing similarities between people and movie categories allows us to attach a most
relevant category to each person.”

Let’s now go through and look at the similarity metrics:

Pseudoinverse of the Laplacian

One metric to consider is the entries in the pseudoinverse of the graph Laplacian matrix.

Not all matrices are invertible (including the Graph Laplacian), so the idea of a pseudoinverse
extends the idea of an inverse to matrices that otherwise wouldn’t be invertible.

The Moore-Penrose pseudoinverse of the Laplacian is calculated by this formula: Lt =

(L — %)_ + %, where e is the all-ones vector and n is the number of nodes.

The pseudoinverse of the Laplacian is a similarity matrix (the similarity of two vertices i and
j can be found by looking at the ith row and jth column of L™, or vice versa, since this is a
symmetric matrix).

This matrix’s entries are used to calculate many of the following quantities.



Average First-Passage Time

The average first passage time, m(kl|i), is defined as the average number of steps that a
random walker at node ¢ takes to visit node k. It can be thought of as the expected value
of the minimum time of hitting state k if you start at state 7, represented in this formula:
m(kli) = E[Ty|s(0) = ]

m(klk) =0

m(kli) =1+ Zyzl pim(klj)
m(kli) = Z;.;l (lj] — U U+ le) d;; - Computed from the pseudoinverse of the Laplacian

Here are some formulas describing how to calculate it: - {

Average First-Passage Cost

The average first passage cost is o(k|i), and it’s a closely related quantity to the average first-
passage time. The only difference is that a random walker incurs a cost c(j|i) if they walk
from ¢ to some neighboring vertex j. So, the average first-passage cost is the average cost a
random walker incurs if they want to visit any node k£ from node 1.

o(klk) =0
o(kli) = Z;Ll pijc(j‘i) + Z;;l pij0<k|j)

- o(k\z) = Z;;l (lj] - - le + l;k> b; - Computed from the pseudoinverse of the Laplacian,
again

Here are some formulas describing how to calculate it: - {

Average Commute Time

The average commute time is a “symmetric” version of the average first-passage time. When
computing the average-first passage time from node 7 to j, it matters whether you're going
from ¢ to j or from j to ¢. So, the average commute time is a sum of the Sum of the average-
first passage times in both directions between i and j, and it’s notated as such: n(i,j) =

m(ilj) + m(jli)
Here are some formulas describing how to calculate it: - n(i,j) = m(ilj) + m(j|i) - n(i,j) =
Ve (l;; + 1 — 215) - 1, is an element of the matrix L - Vi, the volume of the graph, is the

sum of all of the degrees - n(i,j) = Vg (ei — ej)T L+ (ei — ej) - e; is a standard basis vector
(like < 1,0,...,0 > or <0,1,...,0 >)

The average commute time is proportional to the effective resistance between two nodes in the
corresponding resistor network, which is why it’s also called the “resistance distance” (along
with the “commute-time distance”).



Euclidean Commute Time Distance and Principal Component Analysis

The Euclidean Commute Time Distance is defined as [n(i,5)]z. It’s the square root of the
average commute-time distance.

Here’s what’s interesting: You can define vectors that correspond to each node called trans-
formed node vectors using the spectral decomposition of the pseudoinverse of the Laplacian
matrix. Here are the formulas describing how to obtain them:

X, = %Uei7 where U contains the eigenvectors of L™, while is a diagonal matrix with the
eigenvalues.

The distance between the transformed node vectors is exactly the Euclidean Commute Time
Distance, and taking inner products of the node vectors gets you the entries of the pseudoin-
verse of the Laplacian matrix. According to Fouss et al., this justifies the use of the Laplacian
pseudoinverse as a similarity matrix.

Principal Component Analysis gives you lower-dimensional transformed node vectors that are
still roughly separated by the Fuclidean Commute Time Distance.

Conclusion

To review, we started by looking at graphs and their associated matrices. We then quickly
examined resistor networks and how they could be understood using graphs. A discussion of
random walks on graphs followed. Finally, all of these topics were used to construct various
similarity metrics for nodes on a graph. Interestingly, the pseudoinverse of the Laplacian matrix
can be used to calculate a lot of these similarity metrics. Its entries can be calculated from
taking the inner products of the transformed node vectors, and its entries serve as similarity
metrics themselves.



Sources:

e Spectral and Algebraic Graph Theory by Daniel Spielman

¢ Random-Walk Computation of Similarities between Nodes of a Graph with Application
to Collaborative Recommendation by Fouss et al.

e Quora post on the Graph Laplacian by Muni Sreenivas Pydi

e Cross Validated post on Principal Component Analysis by amoeba

e Post on the Graph Laplacian by Matthew Bernstein

e Linear Algebra with Applications by Jeffrey Holt

e Basics of Applied Stochastic Processes by Richard Serfozo

¢ OpenStax University Physics, Volume 2

¢ Optimization Models by Laurent EI Ghaoui

As noted earlier, most of this writeup comes from my reading of Random-Walk Computation
of Similarities between Nodes of a Graph with Application to Collaborative Recommendation
by Fouss et al. and the textbook Spectral and Algebraic Graph Theory by Daniel Spielman.

In addition, the portion on the Graph Laplacian matrix was informed by a well-written Quora
post by Muni Sreenivas Pydi and a page on Matthew Bernstein’s website; these two sources
helped provide me with a good intuition for what the Laplacian actually does. I also consulted
OpenStax Physics for the section on resistor networks, along with Linear Algebra with Ap-
plications and Basics of Applied Stochastic Processes for two perspectives on Markov chains.
Finally, my understanding on Principal Component Analysis was improved by a well-written
post on Stack Exchange by the user “amoeba”, and my undewrstanding of spectral theory was
furthered by Laurent El Ghaoui’s online textbook on optimization models.


http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://ieeexplore.ieee.org/document/4072747
https://ieeexplore.ieee.org/document/4072747
https://qr.ae/pKgj6B
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://mbernste.github.io/posts/laplacian_matrix/
https://store.macmillanlearning.com/us/product/Linear-Algebra-with-Applications-2nd-edition/p/1464193347
http://www.stat.yale.edu/~jtc5/251/readings/Basics%20of%20Applied%20Stochastic%20Processes_Serfozo.pdf
https://openstax.org/details/books/university-physics-volume-2
https://inst.eecs.berkeley.edu/~ee127/sp21/livebook/l_sym_sed.html

	Introduction
	Graph Theory
	Matrices Associated with Graphs
	Resistor Networks
	Random Walks
	Similarity Metrics
	Pseudoinverse of the Laplacian
	Average First-Passage Time
	Average First-Passage Cost
	Average Commute Time
	Euclidean Commute Time Distance and Principal Component Analysis

	Conclusion
	Sources:

