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I. Introduction

Supervised learning is when machine learning models utilize labeled datasets to represent relationships between variables. Gaussian
Processes is a non-parametric (not dependent on any distribution) probabilistic approach to finding a function. It gives function predictions to fit
the training data along with uncertainty measures for each prediction, using the ideas of the Gaussian Distribution applied to functions. Gaussian
Processes can be used for linear and multiple regression as well as classification, though this paper will focus on regression. In mathematical
terms, Gaussian Processes model data using multivariate normal distribution samples with a covariance function.

II. Strengths and Weaknesses of Gaussian Processes.
Strengths: They are flexible in the ability to model non-linear relationships very precisely. The uncertainty percentage from the

predictive distribution over all possible outputs provides a unique perspective on the results, and this method looks at a finite amount of points
without requiring a significant amount of data.Weaknesses: In some situations, simpler models such as linear regression can be more effective
and can be computationally expensive, since the inversion of an nxn covariance matrix has a runtime complexity of O(N3). Furthermore, the
accuracy of the results of Gaussian Processes are dependent on the kernel function selection.

III. Kernels
Kernels are used to measure the similarities between data points in different dimensions and are effective in representing nonlinear

functions. They measure the impact of each input in the model, creating a dot product of two points as if they are in a higher dimension without
actually being there, allowing for the higher dimension to be simulated without computational intensity. This is the differentiating factor.

IV. Space of Prior and Posterior

The prior is before Gaussian Process has been applied, our
prediction of the true function (kernel chosen with this
assumption). The posterior shows the Gaussian Process’
accurate prediction of the true function, with the gray space
around the function being the uncertainty measure to provide
a margin for error against the prediction. Obtaining data and
looking at the noisy function evaluations on those data points
gives us a distribution of functions conditioned on our
dataset. This results in the posterior mean, kernel regression,
and posterior variance functions. (Reference: This
visualization is from GP for Machine Learning Textbook)

V. Application of Gaussian Process
Here is an application of Gaussian Process of Electricity Production over Time when Power is Applied to a Gas Generator. We can see

Gaussian Process’ effectiveness as predictions show good results but also learn that in simpler data sets linear regression can be a better choice.
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