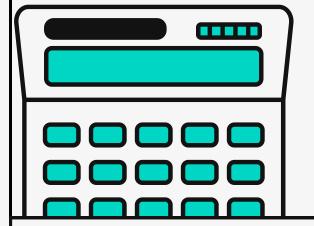
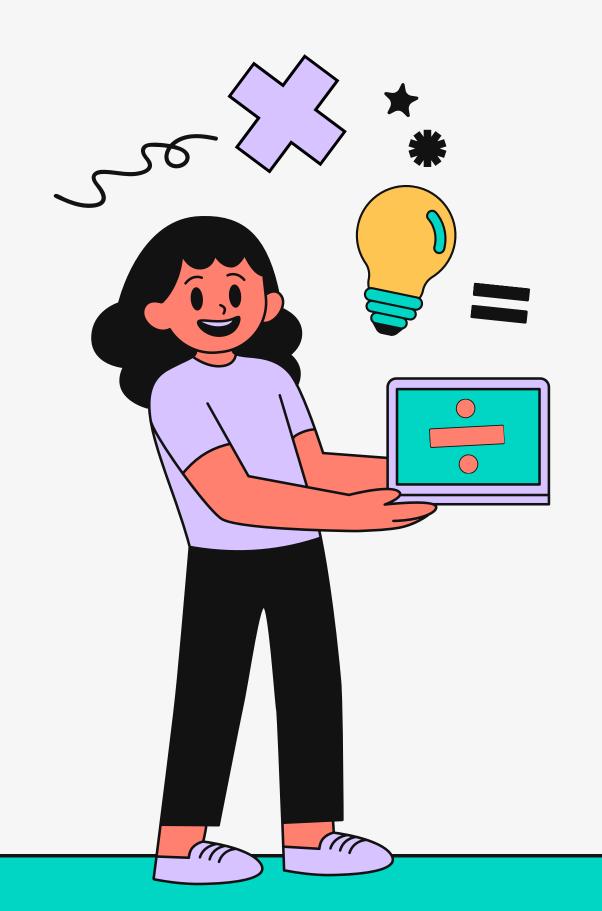


with Applications

By: Duc Huy Nguyen

Mentor: Patrick Campbell





# Agenda

Regression Models

**Applications** 

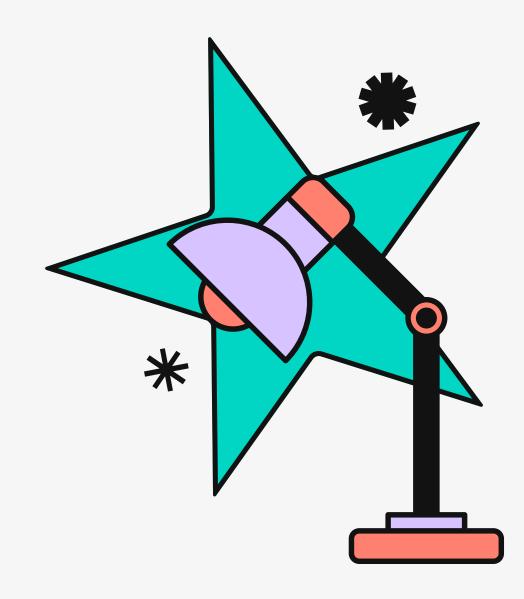
Classification Models

**Applications** 

Conclusion

# Regression

Predict continuous values (e.g. prices, life expectancy, etc.)



# Multiple Linear Regression

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

We would want to minimize the sum of squared residuals to minimize our error when we are fitting Linear Regression

RSS = 
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
= 
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2.$$

# **Shrinkage Models**

### **Ridge Regression**

### **Lasso Regression**

$$\underset{\hat{\beta}_R}{\text{minimize}} \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right) + \lambda \sum_{j=1}^p \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$

$$\underset{\hat{\beta}_L}{\text{minimize}} \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right) + \lambda \sum_{j=1}^p \beta_j = \text{RSS} + \lambda \sum_{j=1}^p \beta_j$$

$$\underset{\hat{\beta}_L}{\text{minimize}} \sum_{i=1}^n \left( y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right) + \lambda \sum_{j=1}^p \beta_j = \text{RSS} + \lambda \sum_{j=1}^p \beta_j$$

The shrinkage penalty is squared the magnitude of coefficient

The shrinkage penalty is based on the absolute value of the coefficients

Coefficients converges towards (but not) O as the parameter gets larger

Coefficients converges towards and might get to O as the parameter gets larger

Reduce the effects of irrelevant predictors

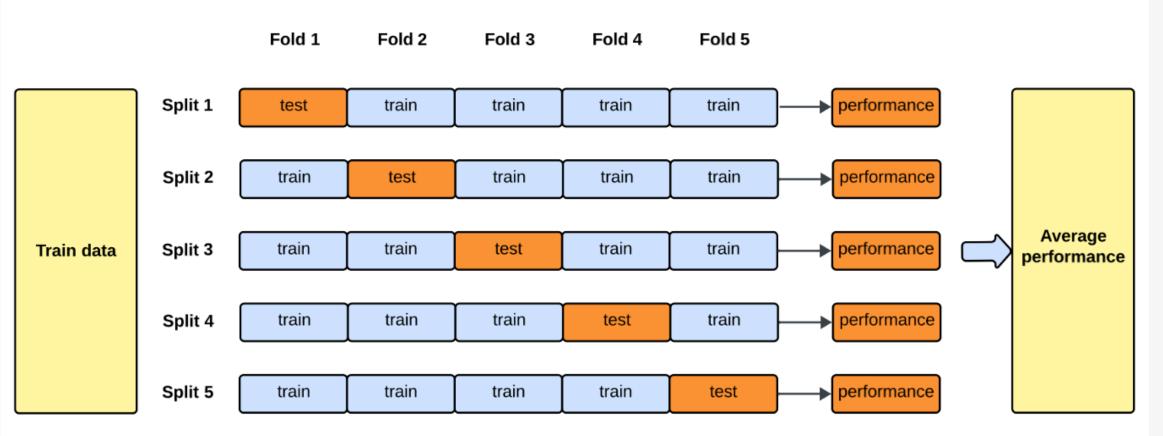
Can potentially selection important features to our linear and omit the irrelevant noises

### **Scaling of Predictors**

Since we are trying to minimize our coefficients here, the scale of our predictors would matter in our model. So we need to standardize our data before model fitting.

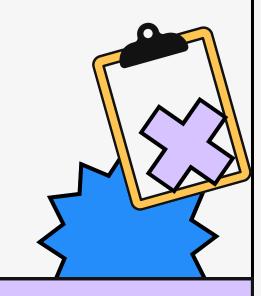
$$z = \frac{x - \mu}{\sigma}$$

# How do we select our tuning parameters



Cross – Validation (CV): split the data randomly into k parts and use k - 1 of them for training and the other for validation (we usually use k = 5 or 10)

We want cross-validation to have a robust estimate of our model performance, mitigate overfitting, utilize data, and have effective hyperparameters tuning (for models like SVM, etc.)



# Our problems

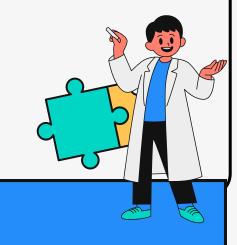
### **Datasets**

- Monthly data on GDP, CPI, S&P500, job postings, unemployment claims, crime data, etc.
- Mostly retrieved from the Federal Reserve Economic Data (FRED)
- Note that a few of this are interpolated

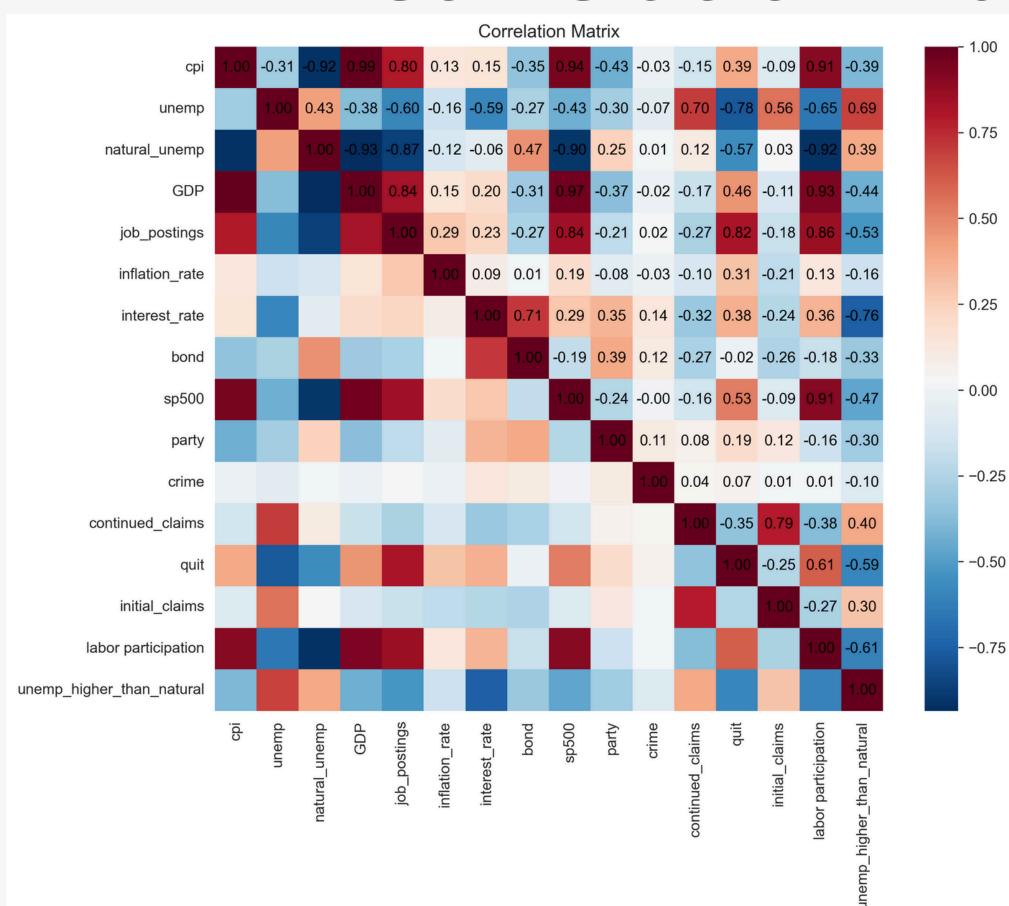
### Questions

How can we predict unemployment using various economics predictors (potentially job postings)

When would the unemployment raise over the natural unemployment rate\*



# **Correlation Matrix**



A notable relation here is between GDP and CPI with correlation up to 0.99 and GDP and S&P500 with correlation up to 0.97

Note that I also have
Pairs Plot visualization for
these variables so feel
free to check the Github
repo for that

# Adjustments for Multicollinearity

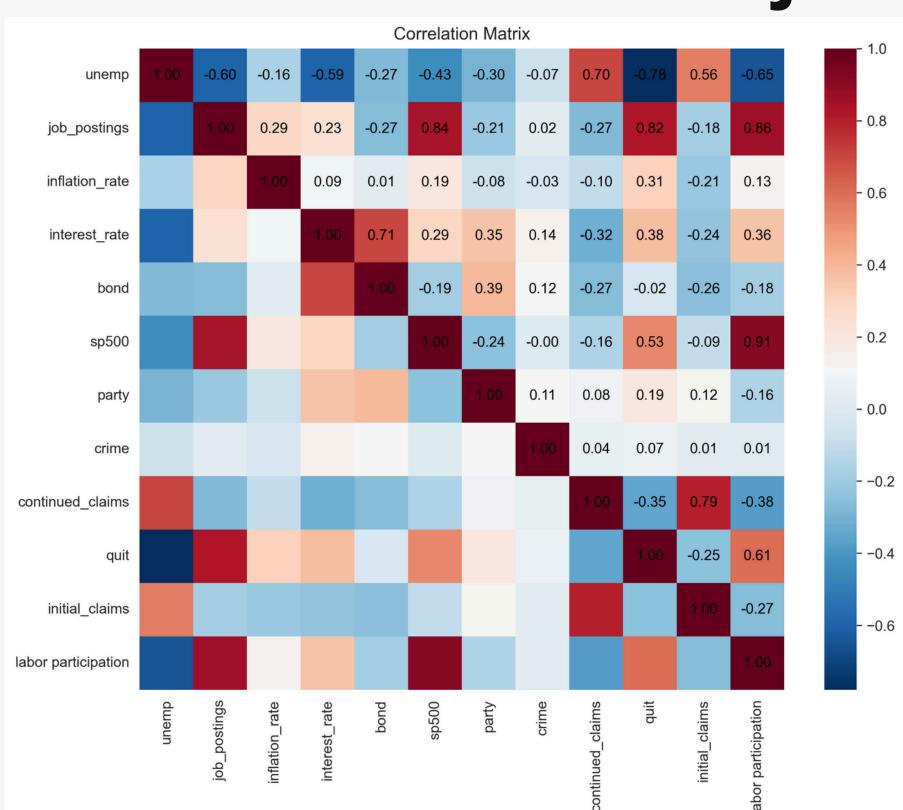
Why do we need to adjust for Multicollinearity: to increase our interpretability as we can identify direct relationship between predictors and response

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \ a_{21} & a_{22} & \dots & a_{2p} \ dots & dots & \ddots & dots \ a_{p1} & a_{p2} & \dots & a_{pp} \end{pmatrix}$$

$$\det(A-\lambda I)=0$$

- 1. Compute the eigenvalues and the eigenvectors for the correlation matrix
- 2. Take the ratio of the max eigenvalue to all other eigenvalues elements-wise
- 3. Identify which element of the ratio vector is the highest
- 4. Choose the corresponding eigenvector for the highest element in the previous step
- 5. Identify which two elements in this eigenvectors are the highest in value

# Correlation Matrix After Adjustments



GDP and CPI are omitted to deal with multicollinearity

We can see that though there are still some correlations between predictors, the overall correlations significantly decreased



# Regression Model Results

### Multiple Linear Regression (Without Scaling)

| OLS Regression | Results |
|----------------|---------|
|----------------|---------|

| Dep. Variable:    | unemp            | R-squared:          | 0.948     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.945     |
| Method:           | Least Squares    | F-statistic:        | 346.0     |
| Date:             | Tue, 02 Dec 2025 | Prob (F-statistic): | 5.67e-128 |
| Time:             | 13:33:44         | Log-Likelihood:     | -131.98   |
| No. Observations: | 222              | AIC:                | 288.0     |
| Df Residuals:     | 210              | BIC:                | 328.8     |
| Df Model:         | 11               |                     |           |

nonrobust

|                                        | coef       | std err  | t       | P> t  | [0.025    | 0.975]   |
|----------------------------------------|------------|----------|---------|-------|-----------|----------|
| const                                  | 31.0544    | 2.098    | 14.800  | 0.000 | 26.918    | 35.191   |
| <pre>job_postings inflation_rate</pre> | 0.0002     | 6.7e-05  | 3.378   | 0.001 | 9.43e-05  | 0.000    |
|                                        | 0.1184     | 0.110    | 1.073   | 0.284 | -0.099    | 0.336    |
| interest_rate bond                     | -0.0229    | 0.035    | -0.655  | 0.513 | -0.092    | 0.046    |
|                                        | -0.1991    | 0.056    | -3.581  | 0.000 | -0.309    | -0.089   |
| sp500                                  | 0.0031     | 0.001    | 4.191   | 0.000 | 0.002     | 0.005    |
| party                                  | -0.5710    | 0.106    | -5.371  | 0.000 | -0.781    | -0.361   |
| crime                                  | -2.327e-06 | 1.76e-06 | -1.325  | 0.187 | -5.79e-06 | 1.13e-06 |
| continued_claims quit                  | 6.409e-08  | 6.7e-09  | 9.561   | 0.000 | 5.09e-08  | 7.73e-08 |
|                                        | -3.1322    | 0.285    | -10.983 | 0.000 | -3.694    | -2.570   |
| initial_claims                         | -6.754e-08 | 5.47e-08 | -1.234  | 0.219 | -1.75e-07 | 4.04e-08 |
| labor participation                    |            | 1.45e-05 | -10.068 | 0.000 | -0.000    | -0.000   |

| Omnibus:                  | 2.231  | Durbin-Watson:    | 2.062    |
|---------------------------|--------|-------------------|----------|
| <pre>Prob(Omnibus):</pre> | 0.328  | Jarque-Bera (JB): | 1.864    |
| Skew:                     | -0.191 | Prob(JB):         | 0.394    |
| Kurtosis:                 | 3.234  | Cond. No.         | 1.16e+09 |

Covariance Type:

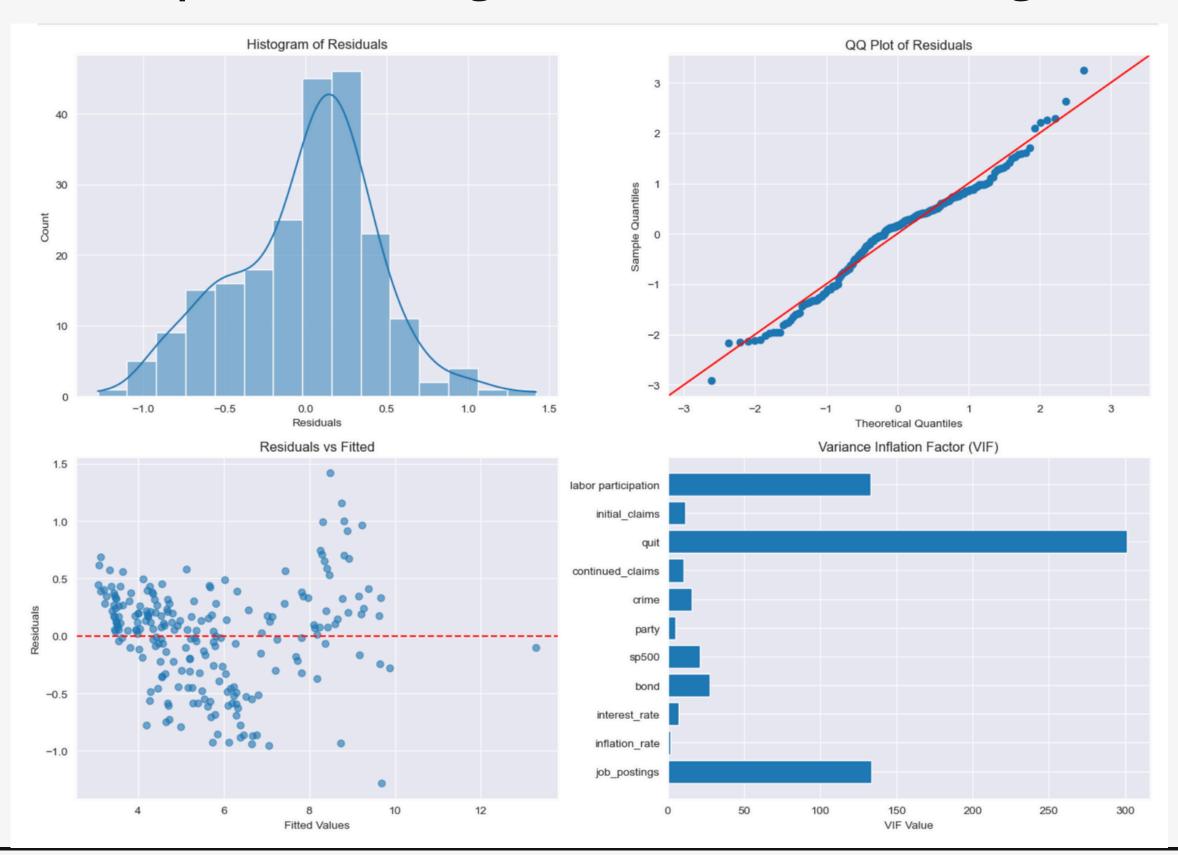
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.16e+09. This might indicate that there are strong multicollinearity or other numerical problems.

Train RMSE: 0.43847419579909785 Test RMSE: 0.647007010077397 Relationship is hard to draw here since predictors are on different scaled which disrupt our interpretation of coefficients

Model Diagnostics

Multiple Linear Regression (Without Scaling)



# Regression Model Results

### Multiple Linear Regression (With Scaling)

| OLS Regression Results                                                                                                          |                                                                                                                                                                                             |                                   |                                                                                                                                                                                               |                                                                                                             |                                                                                                                  |                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:                            | y R-squared: 0.952 OLS Adj. R-squared: 0.950 Least Squares F-statistic: 380.4 Mon, 01 Dec 2025 Prob (F-statistic): 4.52e-132 16:03:21 Log-Likelihood: 22.557 222 AIC: -21.11 210 BIC: 19.72 |                                   |                                                                                                                                                                                               |                                                                                                             |                                                                                                                  |                                                                                                              |  |
| =======================================                                                                                         | coef                                                                                                                                                                                        | std 6                             | ========<br>err                                                                                                                                                                               | t P> t                                                                                                      | [0.025                                                                                                           | 0.975]                                                                                                       |  |
| const job_postings inflation_rate interest_rate bond sp500 party crime continued_claims quit initial_claims labor participation | 0.1352<br>0.2439<br>0.0155<br>-0.0324<br>-0.1312<br>0.2935<br>-0.2679<br>-0.0064<br>0.3237<br>-0.5801<br>-0.0295<br>-0.7162                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0   | 0.17       0.93         0.34       -0.94         0.35       -3.79         0.53       5.53         0.51       -5.23         0.33       9.83         0.51       -11.23         0.29       -1.03 | 0.001<br>0.364<br>10 0.348<br>0.000<br>70 0.000<br>38 0.000<br>17 0.677<br>31 0.000<br>72 0.000<br>19 0.309 | 0.076<br>0.096<br>-0.018<br>-0.100<br>-0.199<br>0.190<br>-0.369<br>-0.037<br>0.259<br>-0.682<br>-0.087<br>-0.842 | 0.194<br>0.392<br>0.049<br>0.035<br>-0.063<br>0.397<br>-0.167<br>0.024<br>0.389<br>-0.479<br>0.028<br>-0.590 |  |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                                                                         | -                                                                                                                                                                                           | 0.996<br>0.608<br>-0.149<br>3.044 | Durbin-Wats Jarque-Bera Prob(JB): Cond. No.                                                                                                                                                   |                                                                                                             | 2.304<br>0.837<br>0.658<br>13.6                                                                                  |                                                                                                              |  |

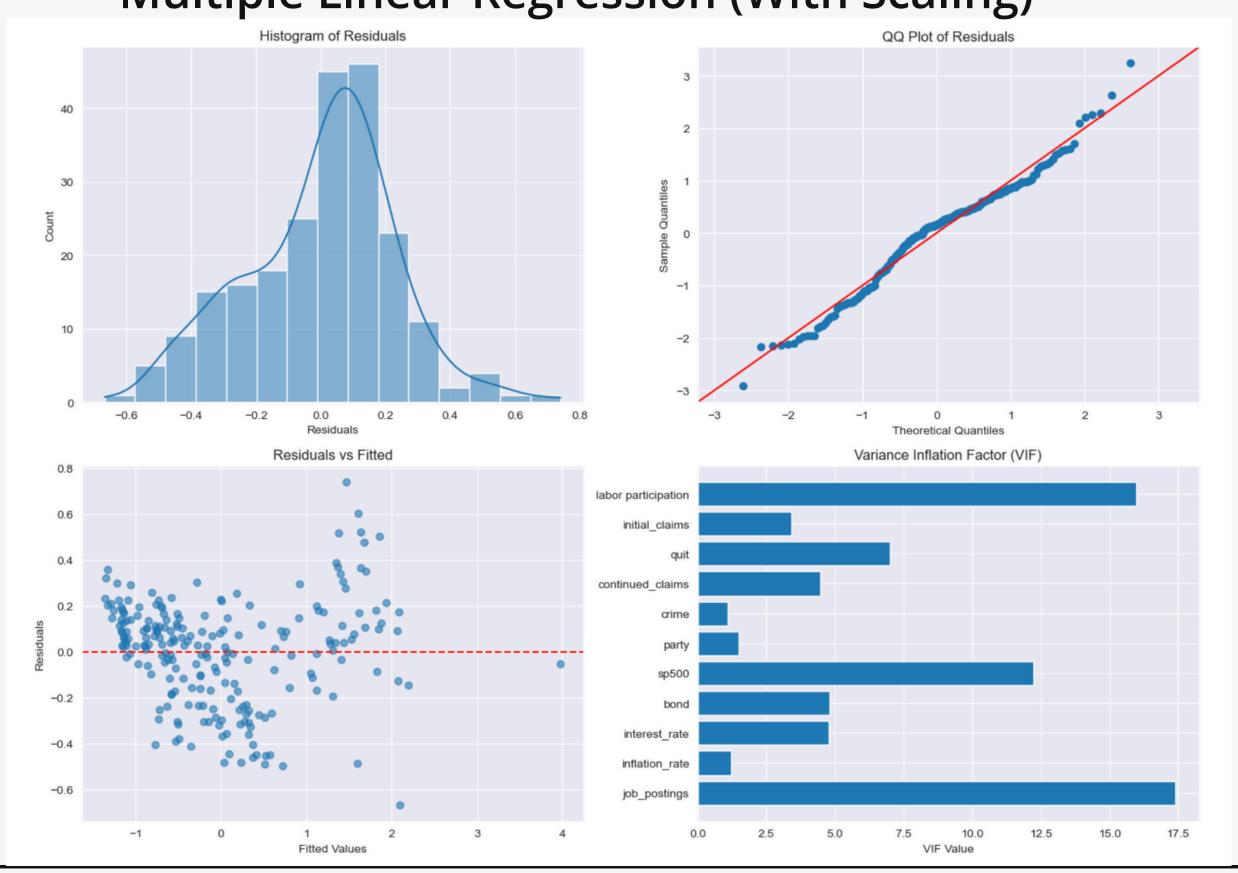
Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Train RMSE: 0.21859248073714296 Test RMSE: 0.3088854422696523 We can see that there is a strong negative relation between labor participation and unemployment and also total number of labor quits

Our Mean Squared Errors are significantly reduced

# Model Diagnostics Multiple Linear Regression (With Scaling)



# Regression Model Results

### Multiple Linear Regression (With Scaling and Collinearity Adjusted)

| OLS Regression Results                                                      |                                                                                 |                              |                                        |                                                                |                                                    |                                                                 |                                                               |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Dep. Variable:                                                              | y R-squared: 0.948  OLS Adj. R-squared: 0.945  Least Squares F-statistic: 346.0 |                              |                                        |                                                                |                                                    |                                                                 |                                                               |
| Method:<br>Date:<br>Time:                                                   | Least So<br>Tue, 02 Dec<br>13:                                                  | 346.0<br>5.67e-128<br>12.559 |                                        |                                                                |                                                    |                                                                 |                                                               |
| No. Observations: Df Residuals: Df Model:                                   | none                                                                            | 222<br>210<br>11<br>robust   | AIC:<br>BIC:                           |                                                                |                                                    | -1.119<br>39.71                                                 |                                                               |
| Covariance Type:                                                            | coef                                                                            | std                          | ======<br>err                          | t                                                              | P> t                                               | [0.025                                                          | 0.975]                                                        |
| <pre>const job_postings inflation_rate interest_rate bond sp500 party</pre> | 0.1542<br>0.2653<br>0.0188<br>-0.0226<br>-0.1256<br>0.2324<br>-0.2977           | 0.0<br>0.0<br>0.0            | 033<br>079<br>017<br>035<br>035<br>055 | 4.707<br>3.378<br>1.073<br>-0.655<br>-3.581<br>4.191<br>-5.371 | 0.000<br>0.001<br>0.284<br>0.513<br>0.000<br>0.000 | 0.090<br>0.110<br>-0.016<br>-0.091<br>-0.195<br>0.123<br>-0.407 | 0.219<br>0.420<br>0.053<br>0.046<br>-0.056<br>0.342<br>-0.188 |
| crime continued_claims quit initial_claims labor participation              | -0.0218<br>0.3254<br>-0.5825<br>-0.0362<br>-0.6813                              | 0.<br>0.<br>0.               | 016<br>034<br>053<br>029<br>068        | -1.325<br>9.561<br>-10.983<br>-1.234<br>-10.068                | 0.187<br>0.000<br>0.000<br>0.219<br>0.000          | -0.054<br>0.258<br>-0.687<br>-0.094<br>-0.815                   | 0.011<br>0.393<br>-0.478<br>0.022<br>-0.548                   |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                     | 2.231 Durbin-Watson: 0.328 Jarque-Bera (JB): -0.191 Prob(JB): 3.234 Cond. No.   |                              |                                        |                                                                |                                                    | 2.062<br>1.864<br>0.394<br>13.8                                 |                                                               |

The relationship between predictors and responses do not change too radical but our MSE increases

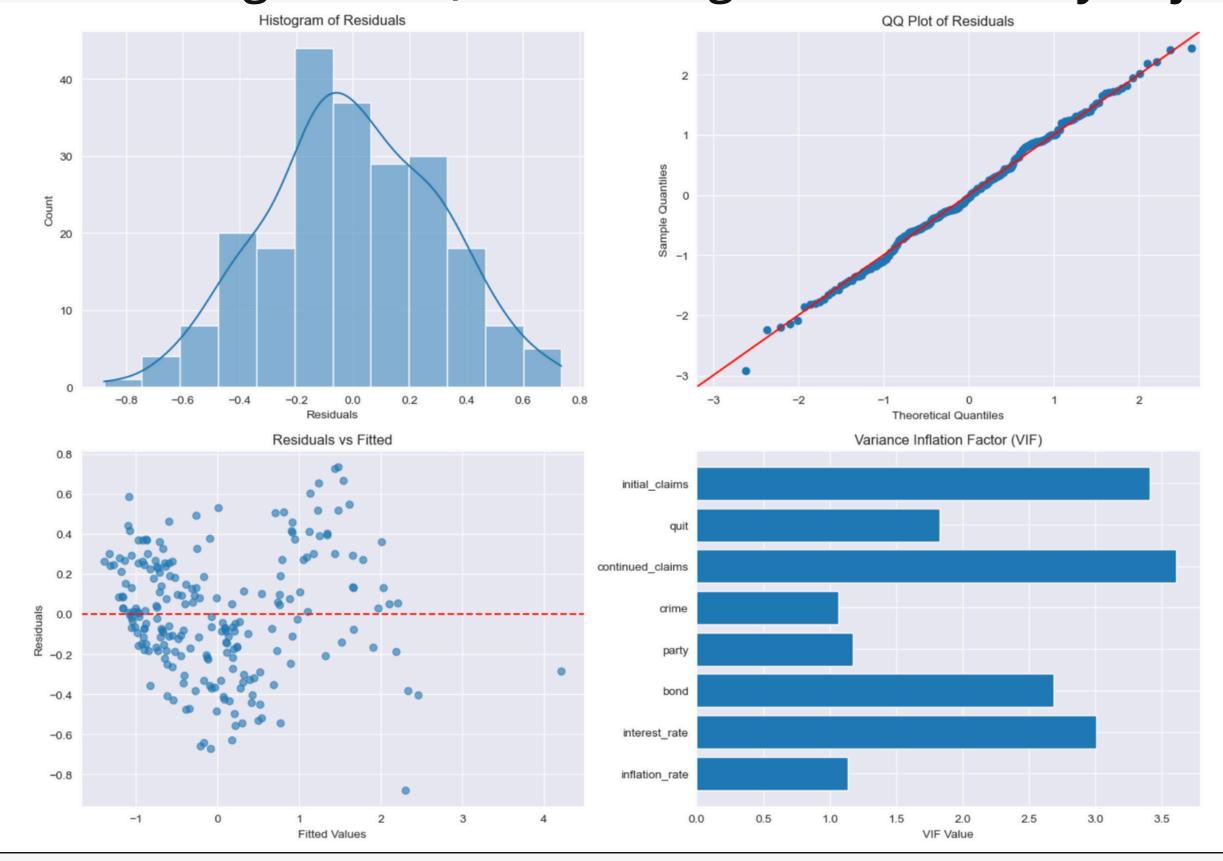
### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Train RMSE: 0.30034234743688865 Test RMSE: 0.41860694635325

Model Diagnostics

Multiple Linear Regression (With Scaling and Collinearity Adjusted)



# Regression Model Results

### Ridge Regression

```
coefficient
                columns
           job_postings
                            0.237053
                         0.015957
         inflation_rate
          interest_rate
                           -0.034675
3
                   bond
                           -0.129258
                  sp500
                          0.290275
5
                            -0.271628
                  party
                  crime
                            -0.006404
       continued_claims
                          0.324969
8
                           -0.575488
                   quit
         initial_claims
                           -0.028760
    labor participation
                            -0.708199
=== Cross-Validation Metrics ===
CV RMSE : 0.2455
CV R<sup>2</sup>
        : 0.9339
=== Train/Test RMSE ===
Train RMSE : 0.4675
```

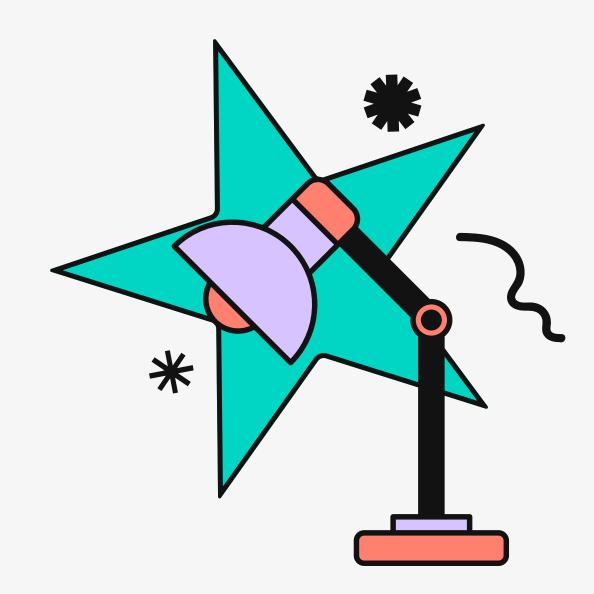
Test RMSE : 0.5559

### **Lasso Regression**

```
coefficient
                columns
           job_postings
                            0.220325
         inflation_rate 0.016650
                           -0.037950
          interest_rate
                   bond
                           -0.126145
                  sp500
                           0.284944
                           -0.279390
                  party
                  crime
                           -0.005559
       continued_claims
                           0.324048
8
                           -0.564672
                   quit
         initial claims
                           -0.023662
    labor participation
                           -0.692688
=== Cross-Validation Metrics ===
CV RMSE : 0.2497
CV R<sup>2</sup>
        : 0.9322
=== Train/Test RMSE ===
Train RMSE : 0.4677
Test RMSE : 0.5537
```

# Classification

Predicts discrete categories / classes (e.g. spam/not spam, gender, etc.)



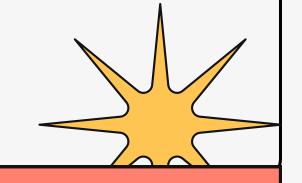
# Logistic Regression

Predicting a binary response using multiple predictors

$$log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Estimated coefficients are chosen to maximize the likelihood function rather than minimizing sum of squared residuals;

$$\ell(\beta_0, \beta_1, \cdots, \beta_p) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=1} (1 - p(x_i'))$$



# Linear Discriminant Analysis and Naive Bayes

Based on different assumptions about our datasets and Bayes' Theorem

$$Pr(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^k \pi_l f_l(x)}$$

### **LDA**

Assuming that predictors are normally distributed

$$f(x) = \frac{1}{(2\pi)^{p/2} |\sum |^{1/2}} exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

### **Naive Bayes**

Assuming that within the k class, the p predictors are independent

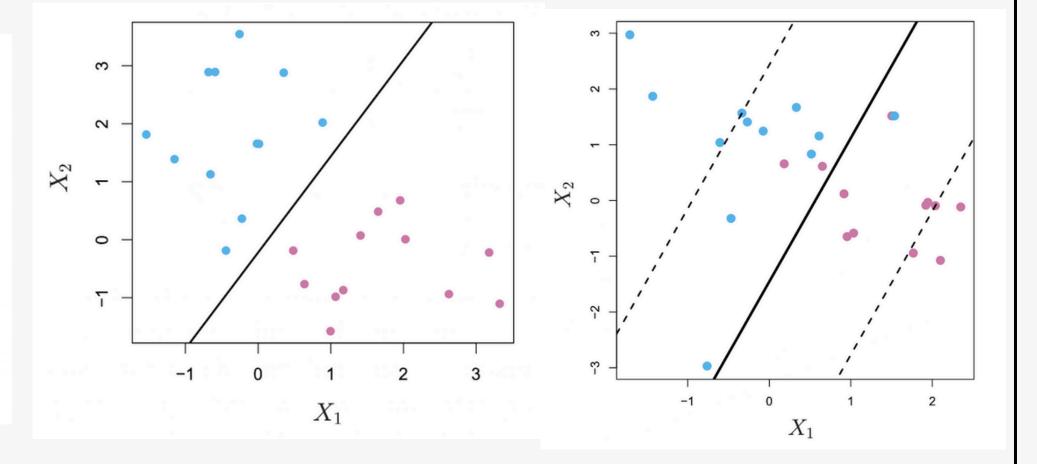
$$f_k(x) = \prod_{j=1}^p f_{jk}(x_j)$$



# Linear Support Vector Classifier

The main idea is that we want to fit a hyperplane seperating classes

$$\begin{aligned} & \underset{\beta_0,\beta_1,\ldots,\beta_p,\epsilon_1,\ldots,\epsilon_n}{\operatorname{maximize}} & M \\ & \text{subject to} & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip}) \geq M(1 - \epsilon_i), \\ & \epsilon_i \geq 0, & \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$



In which M is the minimal distance between any points and the decision boundary C is our total budget for errors (ei) of how the point violates our margin

# **Support Vector Machine**

An extension from the support vector classifier that enlarge the feature spaces using kernel

### Kernel

Generalization of the inner product between prediction and actual

$$K(x_i, x_{i'}) = \sum_{j=1}^{p} x_{ij} x_{i'j},$$

Give us the same linear support vector classifier

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle,$$

S: support vectors - data points closest to the decision boundary

### Radial kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$



## **Classification Model Results**

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

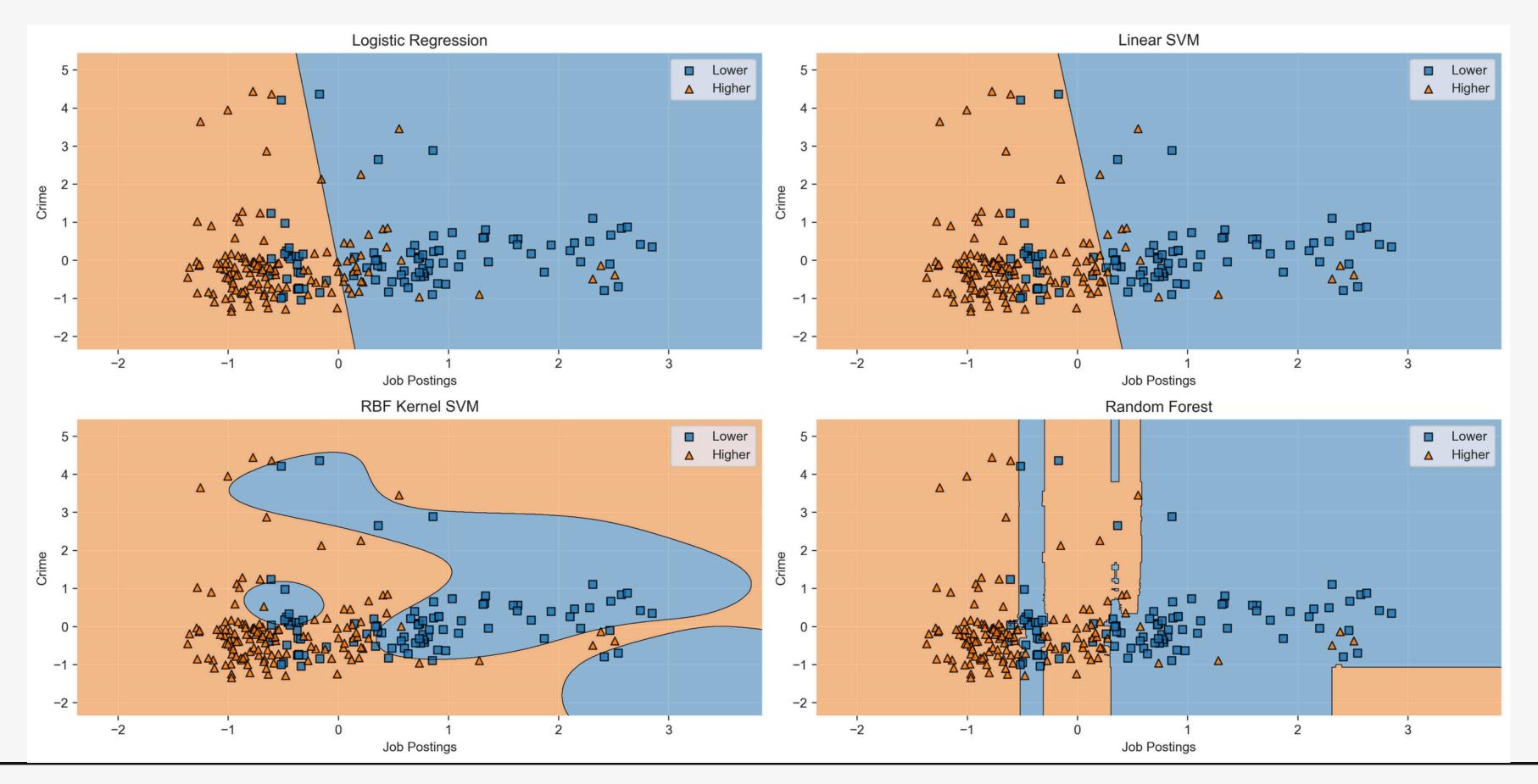
$$F_1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

$$AUC = \int_0^1 TPR(FPR) d(FPR)$$

|   | Model                           | Train<br>Accuracy | Test<br>Accuracy | Precision | Recall   | F1 Score | AUC      | TN | FP | FN | TP |
|---|---------------------------------|-------------------|------------------|-----------|----------|----------|----------|----|----|----|----|
| 0 | Logistics Regression            | 0.981982          | 0.986667         | 0.977273  | 1.000000 | 0.988506 | 0.984375 | 31 | 1  | 0  | 43 |
| 1 | Linear Discriminant<br>Analysis | 0.977477          | 0.933333         | 0.952381  | 0.930233 | 0.941176 | 0.933866 | 30 | 2  | 3  | 40 |
| 2 | Naive Bayes                     | 0.914414          | 0.906667         | 0.973684  | 0.860465 | 0.913580 | 0.914608 | 31 | 1  | 6  | 37 |
| 3 | Linear SVM                      | 0.981982          | 0.973333         | 0.955556  | 1.000000 | 0.977273 | 0.968750 | 30 | 2  | 0  | 43 |
| 4 | RBF SVM                         | 0.986486          | 0.973333         | 0.955556  | 1.000000 | 0.977273 | 0.968750 | 30 | 2  | 0  | 43 |

Disclaimer: This is totally based on the data that I have on hand so the overfitting might be a issue for predicting future data

# Visualization of our Classifier



# Current shortcomings

- Heteroskedasticity in MLR, can try WLS to fix
- Limited Datasets so overfitting might be a problem
- Data is currently manually pulled from FRED through CSV format then extract into the notebook
- Predictors and Responeses are highly time dependent
- Can fixed this with consider Time Series models but that might not be working as well

## Remarks

- Correlation does not result in direct causation
- We would prefer a simpler models when they are yielding comparable results
- Simpler Models are more interpretable than complex ones
- Sometimes, complex models does not yield better results

# Thank you

Feel free to check out my Github repo for your reference (QR code below)

Special thank to Patrick for all his help this quarter

