THE BASICS OF MULTIPLE TESTING ELLY LEE

RECAP: HYPOTHESIS TESTING

- Statistical method used to decide whether the data provides significant evidence to reject a hypothesis
- Null hypothesis (H₀): a gene is NOT related to colon cancer
- Alternative hypothesis (H₁): a gene is related to colon cancer
- Type 1 error (false positive): rejecting H_0 when H_0 is true
 - By construction, valid tests satisfy: $P(FP) \leq \alpha$
- Type 2 error (false negative): failing to reject H₀ when H₀ is false

WHAT IS MULTIPLE TESTING?

- Testing many hypotheses on the same dataset
 - Each hypothesis test has its own p-value $(p_1, p_2, ...)$
- Ex: Genome-wide association studies (GWAS) with 278,869 SNPs
 - Each SNP is associated with a separate hypothesis

THE BIG PROBLEM WITH DOING SO MANY TESTS

- If α = 0.05 for each test, then:
 - For one test -> 5% chance of a false positive
 - For 20 independence tests -> chance of at least on FP $\approx 1 (1 0.05)^{20} \approx 0.64$
 - 64% chance of getting a wrong "significant" result?! TOO HIGH!
- The more tests you run, the more likely to "discover" something that's just "random noise"
- Back to the GWAS example:
 - With a p < 0.05 threshold, 13,943 false positives are expected even if no true associations exist.

FWER OR FDR

- Family Wise Error Rate (FWER): Probability of making at least one FP among all tests
 - FWER = P(at least one $H_0^{(k)}$ rejected for $k = 1, 2, ..., m \mid H_0^{(k)}$ true for all k = 1, ..., m)
- False Discovery Rate (FDR): expected proportion of FP of the total number of positive findings (rejection of a null)
 - An FDR of 5% = among all discoveries (rejections of a null), 5% are expected to be FP (null is actually true)

FWER OR FDR

- Controlling FWER is best for:
 - When you hope not to have any false positives (having FP too costly)
 - The # of hypotheses is small controlling FWER is more conservative
- Controlling FDR is best for:
 - When you have a very large # of tests, and controlling FWER is too stringent
 - When some number of false positives is acceptable

CONTROLLING FWER - BONFERRONI

- If given the significance level α and k tests, then...
- Bonferroni-adjusted threshold $\alpha^* = \alpha/k$
- Example: p_1 = 0.004, p_2 = 0.021, p_3 = 0.037, p_4 = 0.056, p_5 = 0.093, α = 0.05
 - α * = 0.05/5 = 0.01
 - Before Bonferroni: reject H₁, H₂, H₃
 - After Bonferroni: reject H₁

CONTROLLING FWER - HOLM'S STEP DOWN

- Given m hypotheses with p-values p₁, p₂, ..., p_m
- 1. Order them from lowest to highest: $p_{(1)} \le p_{(2)} \dots \le p_{(m)}$ with hypotheses $H_{(1)}$, $H_{(2)}$, ..., $H_{(m)}$
 - Note: Not always $p_1 \neq p_{(1)}$
 - Ex: If $p_1 = 0.021$, $p_2 = 0.05$, $p_3 = 0.004$, then $p_{(1)} = p_3 \le p_{(2)} = p_1 \le p_{(3)} = p_2$
- 2. For each p-value from lowest to highest, test whether $p_{(k)} \le \alpha/(m+1-k)$
- 3. If so, reject $H_{(k)}$, otherwise EXIT
- 4. Continue to examine the next large p-value until EXIT or last p-value is examined
 - If $p_{(1)} \le \alpha/m$, reject $H_{(1)}$ and continue, otherwise EXIT
 - If $p_{(2)} \le \alpha/(m-1)$, reject $H_{(2)}$ and continue, otherwise EXIT
 - And so on...

CONTROLLING FWER - HOCHBERG'S STEP UP

- Similar procedure as Holm's, but instead of starting from the smallest p-value, we begin from the **largest** p-value
 - If $p_{(m)} \le \alpha$, reject $H_{(m)}$ and below and EXIT, otherwise continue
 - If $p_{(m-1)} \le \alpha/2$, reject $H_{(m-1)}$ and below and EXIT, otherwise continue
 - And so on...

CONTROLLING FDR — BENJAMINI-HOCHBERG

- Given m hypotheses with p-values $p_1, p_2, ..., p_m$
- 1. Order them from lowest to highest: $p_{(1)} \le p_{(2)} \dots \le p_{(m)}$ with hypotheses $H_{(1)}$, $H_{(2)}$, ..., $H_{(m)}$
- 2. Choose a target FDR level/desired FDR threshold (e.g. $\alpha = 0.05$)
- 3. For each p-value from lowest to highest, test whether $p_{(k)} \le (k * \alpha)/m$
- 4. If so, reject $H_{(k)}$, otherwise EXIT
- 5. Continue to examine the next large p-value until EXIT or last p-value is examined
 - If $p_{(1)} \le \alpha/m$, reject $H_{(1)}$ and continue, otherwise EXIT
 - If $p_{(2)} \le 2\alpha/m$, reject $H_{(2)}$ and continue, otherwise EXIT
 - And so on...

CONCLUSION

- Here, we have discussed a few methods for controlling FWER or FDR:
 - FWER Bonferroni, Holm's, Hochberg's
 - FDR Benjamini-Hochberg
- These corrections allow us to make more meaningful statements when we conduct many hypothesis tests.
- There are many, MANY more methods out there!
- Some methods will take into account **dependence** between hypotheses, hypotheses conducted **sequentially**, and many other situations.