


#### ANOVA





#### **ANOVA**

| Machine 1         | Machine 2            | Machine 3            |
|-------------------|----------------------|----------------------|
| 150               | 153                  | 156                  |
| 151               | 152                  | 154                  |
| 152               | 148                  | 155                  |
| 152               | 151                  | 156                  |
| 151               | 149                  | 157                  |
| 150               | 152                  | 155                  |
| $\bar{x}_1 = 151$ | $\bar{x}_2 = 150.83$ | $\bar{x}_3 = 155.50$ |

- Null hypothesis:  $H_0$ :  $\mu_1 = \mu_2 = \mu_3$
- **Alternative hypothesis**:  $H_a$ : Means are not all equal

Check at 95% confidence level.

- SS between(or treatment, or column)
- SS within(or error)

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}} \qquad F = \frac{MSS_{\text{between}}}{MSS_{\text{within}}}$$

#### ANOVA



# Stereotype Threat and Women's Math Performance $\Leftrightarrow$ , $\Leftrightarrow$ $\Leftrightarrow$ ,

Steven J. Spencer <sup>a</sup>, Claude M. Steele <sup>b</sup>, Diane M. Quinn <sup>c</sup>

Show more V

+ Add to Mendeley 📽 Share 🗦 Cite

https://doi.org/10.1006/jesp.1998.1373 7

Get rights and content ↗

Full text access

### Study One



#### Two-Way ANOVA Table (Study 1: Sex × Test Difficullty)

Dependent Variable: GRE-style math performance

| Source                       | df   | F      | p     |
|------------------------------|------|--------|-------|
| Sex                          | 1,52 | 3.99   | .050  |
| Test Difficulty              | 1,52 | 137.27 | <.001 |
| $Sex \times Test Difficulty$ | 1,52 | 5.34   | .025  |
| Error                        | 52   | _      | ·     |
| Total                        | 56   | _      | _     |

Dependent Variable: *GRE*-style math performance

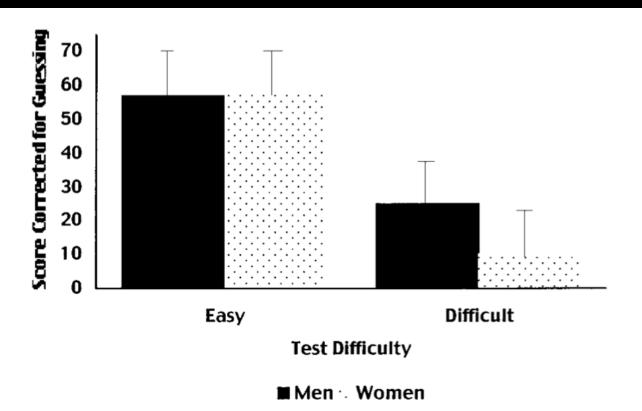
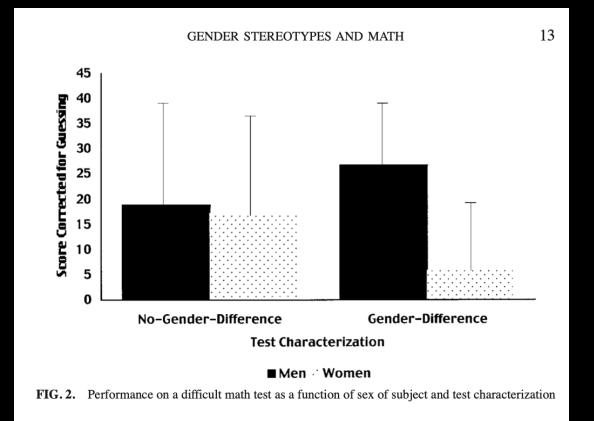



FIG. 1. Performance on a math test as a function of sex of subject and test difficulty

"Our position is that women experience stereotype threat—the possibility of being stereotyped—when taking math tests, and this stereotype threat is especially likely to undermine performance on difficult tests."








### Two-Way ANOVA Table (Study 2: Sex × Test Characterization)

Dependent Variabe: Math test performance (first test only)

| Source                         | df   | F    | р    |
|--------------------------------|------|------|------|
| Sex                            | 1,50 | 5.66 | <.05 |
| Test Characterization          | 1,50 |      | n.s. |
| Sex×Test Characteriza-<br>tion | 1,50 | 4.18 | <.05 |
| Error                          | 50   | _    | ş ş  |
| Total                          | 54   | _    | _    |



"in any situation where the stereotype applies, behaviors and features of the individual that fit the stereotype make it plausible as an explanation of one's performance."



#### Journal of Applied Social Psychology

**⊡** Full Access

# Stereotype Threat, Inquiring About Test Takers' Ethnicity and Gender, and Standardized Test Performance<sup>1</sup>

Lawrence J. Stricker X, William C. Ward

December 2012, Vol. 34, No. 4, pp. 465–488 DOI: 10.3102/0162373712452629 © 2012 AERA. http://eepa.aera.net

# Sticks, Stones, Words, and Broken Bones: New Field and Lab Evidence on Stereotype Threat

Thomas E. Wei

Georgetown Public Policy Institute, Georgetown University

## Does stereotype threat influence performance of girls in stereotyped domains? A meta-analysis



Paulette C. Flore \*, Jelte M. Wicherts

Tilburg University, The Netherlands

#### ARTICLE INFO

Article history:
Received 26 November 2013
Received in revised form 24 October 2014
Accepted 25 October 2014
Available online 13 November 2014

#### ABSTRACT

Although the effect of stereotype threat concerning women and mathematics has been subject to various systematic reviews, none of them have been performed on the sub-population of children and adolescents. In this meta-analysis we estimated the effects of stereotype threat on performance of girls on math, science and spatial skills (MSSS) tests. Moreover, we studied publication bias and four moderators: test difficulty, presence of boys, gender equality within countries, and the type of control group that was used in the studies. We selected study samples when the

N= 4,261 Experiments = 31 Effect sizes = 47



#### Bibliography

- Spencer, Steele & Quinn (1999) link
- Stricker, L. J., & Ward, W. C. (2004). Stereotype Threat, Inquiring About Test Takers' Ethnicity and Gender, and Standardized Test Performance. Journal of Applied Social Psychology, 34(4), 665–693. <a href="https://doi.org/10.1111/j.1559-1816.2004.tb02564.x">https://doi.org/10.1111/j.1559-1816.2004.tb02564.x</a>
- Flore & Wichert's (2015) showed strong publication bias
- <a href="https://www.bps.org.uk/research-digest/reverse-stereotype-threat-women-chess-players-perform-better-against-men-against} when do better in chess matches against men
- Sticks, Stones, Words, and Broken Bones: New Field and Lab Evidence on Stereotype Threat: <a href="https://www.jstor.org/stable/23357023?seq=1">https://www.jstor.org/stable/23357023?seq=1</a> no effect on standardized tests and no effect in lab tests