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The expectation of a random variable or functions of random variables can be difficult to
compute analytically when the probability distribution of those variables is not standard
well-known distributions. One way to approximate expectations is by drawing samples from the
probability distributions. In this quarter, we learned to use Monte Carlo methods to draw samples
from “difficult” distributions and use these samples to approximate expectations.

Monte Carlo is the art of approximating an expectation by the sample mean of a function
of simulated random variables. Consider a random variable X having a pmf/pdf , then𝑓
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Now if we were to take an n-sample of X’s, and we computed the mean of g(x) over the sample,

then we would have the Monte Carlo estimate of . Also, is𝑔
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Importance Sampling is choosing a good distribution from which to simulate one’s

random variables. It involves multiplying the integrand by 1 to yield an expectation of a quantity
that varies less than the original integrand over the region of integration. For example, let ℎ(𝑥)
be a density for the random variable X which takes values only in A so that
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denotes the expectation with respect to the density h. This gives the Monte Carlot estimator:
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Rejection sampling is aiming at generating random numbers from a target probability
distribution f(x). As anticipated, we want to draw a random sample having a probability
distribution f(x), but we are not able to do that with a deterministic algorithm. Hence we use a
“proposal function” g(x), from which it’s easier to draw a random variable X. This function g(x),
multiplied by a constant M, has to ‘envelop’ our f(x) so that . Then, we𝑀 × 𝑔(𝑥) ≥ 𝑓(𝑥)
generate another random variable , we are now provided with a scattering of𝑈 ∼ 𝑈𝑛𝑖𝑓(0,  1)
couples (x, y,) where (so it’s our uniform variable scaled by ).𝑦 = 𝑢 × 𝑀 × 𝑔(𝑥) 𝑀 × 𝑔(𝑥)
The idea is that, for all the points (x, y) which lie under the curve f(x), we accept the fact that x
belongs to a random sample drawn from f(x) with probability . So the decision rule is𝑓(𝑥)

𝑀×𝑔(𝑥)
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possible to f(x), so that the rejection area is the smallest possible. The optimal M is given by
, and represents the probability of acceptance.𝑀 = 𝑠𝑢𝑝 𝑓(𝑥)
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