Predicting genes in DNA using a Hidden Markov Model

Iris Zhou

Background on DNA

ACTCGCGAGACA

- DNA molecules are composed of nucleotides: A, C, T, G.
- We want to focus on genes: sections of DNA that code for proteins
 - Proteins provide structure, function, and regulation for the body's cells and organs

Motivation & Background

ACTCGCGAGACA

- Given a sequence of DNA, what can we learn about its underlying structure?
 - Where are the genes in a sequence of DNA?
 - What protein family does a sequence belong to?

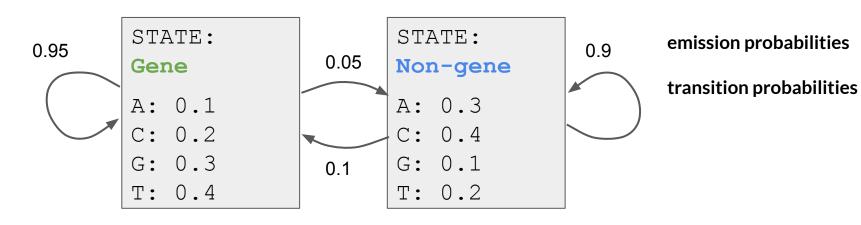
• We can learn these things using a Hidden Markov Model!

What is a Hidden Markov Model?

- Inputs: sequence & states (for each observation)
 - Outcomes of die rolls & fair or loaded die 136242312
 - \circ Sequence of nucleotides & gene or non-gene ATCGATAG
- Outputs: transition & emission probabilities

How can we use HMMs for DNA?

Sequence: A C T C G C G A G A C A Hidden States: G G G N N N G G G G N N

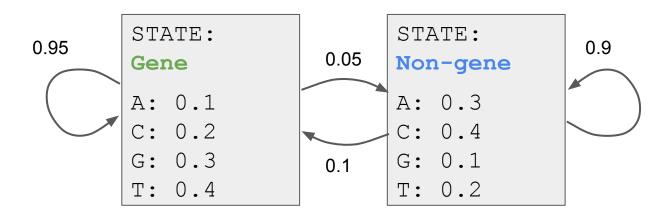


emission probabilities

	Α	С	G	Т
G	0.1	0.2	0.3	0.4
N	0.3	0.4	0.1	0.2

transition probabilities

	G	N
G	0.95	0.05
N	0.1	0.9



• **Goal:** For each symbol in the sequence, what's the most probable sequence of states that ends in that symbol?

. . .

Ex:	A	С	т
Possible sequences of states: (ending in T)	G	N G	G G

• **Goal:** For each symbol in the sequence, what's the most probable sequence of states that ends in that symbol?

emission probabilities

• Inputs: a sequence, an emissions matrix, and a transitions matrix

	Α	С	G	Т
G	0.1	0.2	0.3	0.4
Ν	0.3	0.4	0.1	0.2

transition probabilities

	G	N
G	0.95	0.05
Ν	0.1	0.9

Sequence:

A C T G • • •

• **Goal:** For each symbol in the sequence, what's the most probable sequence of states that ends in that symbol?

.

- Inputs: a sequence, an emissions matrix, and a transitions matrix
- Outputs: the hidden state sequence

Ex:	A	С	т	P(seq)
Possible sequences of states:	G	G	G	0.102
(ending in T)	G	N	G	0.042
	N	G	G	0.057
	Ν	N	G	0.092
	• •	•		

- **Goal:** For each symbol in the sequence, what's the most probable sequence of states that ends in that symbol?
- Inputs: a sequence, an emissions matrix, and a transitions matrix
- Outputs: the hidden state sequence
- Limitations: Algorithm assumes that the emission and transition probabilities are already known
 - Estimate by counting symbols and transitions between symbols with known genes

emission probabilities

transition probabilities

Sequence:

A C T

	Α	С	G	Т
G	0.1	0.2	0.3	<mark>0.4</mark>
Ν	0.3	0.4	0.1	<mark>0.2</mark>

	G	N
G	0.95	0.05
N	0.1	0.9

	А	С	т
Gene	0.1	0.1 × 0.2 = 0.02	0.06 × 0.4 = 0.024
		0.3 × 0.2 = 0.06	0.12 × 0.4 = 0.048
Non-gene	0.3	0.1 × 0.4 = 0.04	0.06 × 0.2 = 0.012
		0.3 × 0.4 = 0.12	0.12 × 0.2 = 0.024

emission probabilities

transition probabilities

Sequence:	
-----------	--

A C T **N N G**

	Α	С	G	Т
G	0.1	0.2	0.3	<mark>0.4</mark>
Ν	0.3	0.4	0.1	<mark>0.2</mark>

	G	N
G	0.95	0.05
Ν	0.1	0.9

traceback

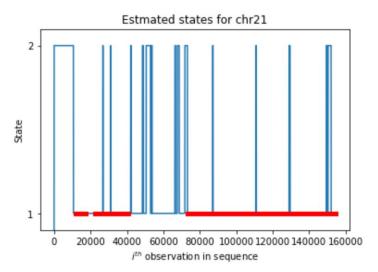
	Α	C	Т
Gene	0.1	0.1 × 0.2 = 0.02	0.06 × 0.4 = 0.024
		-0.3 × 0.2 = 0.06	0.12 × 0.4 = 0.048
Non-gene	0.3	0.1 × 0.4 = 0.04	0.06 × 0.2 = 0.012
		0.3 × 0.4 = 0.12	- 0.12 × 0.2 = 0.024

Building a model using Viterbi

- Idea:
 - Use known genes in Chromosome 21 to estimate emission and transition probabilities
 - Use Viterbi on sequences of DNA to predict locations of genes
 - Compare accuracy of predictions to locations of genes

Results

[5000000, 5154658]

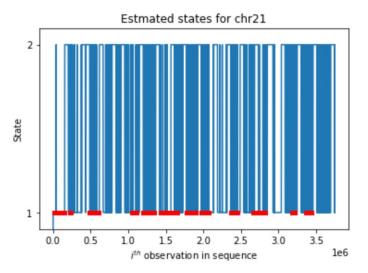


```
--transition matrix--
[[0.00000000e+00 6.77096063e-01 3.22903937e-01]
[0.00000000e+00 9.99971352e-01 2.86480963e-05]
[0.00000000e+00 6.00720865e-05 9.99939928e-01]]
--emission matrix--
[[0.23081771 0.29091187 0.28510585 0.19316456]
[0.18406087 0.22593112 0.20418502 0.38582299]]
```

```
Percent correctly predicted: 0.7625664369124132
Baseline accuracy: 0.32290602490656806
Number of predicted genes: 15
Number of real genes: 6
```

Results

[5011799, 8761335]



```
--transition matrix--
[[0.00000000e+00 6.77096063e-01 3.22903937e-01]
[0.00000000e+00 9.99971352e-01 2.86480963e-05]
[0.00000000e+00 6.00720865e-05 9.99939928e-01]]
--emission matrix--
[[0.23081771 0.29091187 0.28510585 0.19316456]
[0.18406087 0.22593112 0.20418502 0.38582299]]
```

```
Percent correctly predicted: 0.7625664369124132
Baseline accuracy: 0.32290602490656806
Number of predicted genes: 15
Number of real genes: 6
```

Results

Estmated states for chr21 [5011799, 8761335] 2 Estmated states for chr21 2 State State 1 0 100000 150000 200000 50000 250000 300000 0 ith observation in sequence 5 0 2 3

le6

ith observation in sequence

Limitations and Improvements for Model

- Optimize model performance and algorithm efficiency
- Model may be too naive
 - "Gene" or "non-gene" status is not directly dependent on single nucleotides
 - Use codons (groups of 3 nucleotides) instead of single nucleotides
- Model depends on already knowing probabilities

Overall Takeaways

- Hidden Markov Models can help us model hidden states in a sequence
 - Gene vs. non-gene
 - Fair vs. loaded die
 - Speech recognition (what sound is being emitted?)
- Finding hidden states can help us better understand which sections of DNA are important and discover where underlying processes are occuring

