Deep Learning on Sports Data

Mentees: Minh Tran, Weixuan Liu Mentor: Alex Bank

Overview:

Part 1: Volleyball

- Basic Information of the volleyball
- Introduction to the volleyball dataset
- Some Visualizations on dataset

Part 2: Modeling

- Fundamentals on Neural Network, MLP and RNN
- Architecture of our models
- Learning Performance

Part 3: Discussion

- Impacts
- Future Work
- Takeaways

Volleyball

How to score a point

- **Attack:** An attack is recorded any time a player attempts to attack the ball into the opponent's court.
- Winning Attack: A successful attack that scores

- The data is provided by UW Women Volleyball Coach, which include all matches in the Power 5 Conferences from the 2023 season.

(629 games)

DVW File

Detailed information about the corresponding volleyball match

e85b-4d86-

8e9d-

1939

match_id video_file_number video_time code team player_number player_name player_id skill evaluation_code setter_po 63e71130-Oregon e85b-4d86-Megan a21AT+X5⁻41CH2⁻00F 21 7 1 595 State -432404 Attack + 8e9d-Sheridan University 9d5abaa252b2 63e71130-Oregon e85b-4d86-Mychael 12 1 603 a06AT-X6^{-28AH4-00F} State 6 -311736 Attack Vernon 8e9d-University 9d5abaa252b2 63e71130e85b-4d86-Stanford *10AT=X8-96AH2-00B 15 1 607 10 Kendall Kipp -282546 Attack = 8e9d-University 9d5abaa252b2 63e71130e85b-4d86-Stanford 25 *17AN#CF⁻26BH4⁻-1F # 1 633 17 Sami Francis -336492 Attack 8e9d-University 9d5abaa252b2 63e71130-Oregon e85b-4d86-Megan a21AH#V6⁻29DH2⁻00F 21 -432404 Attack 36 1 663 State # 8e9d-Sheridan University 9d5abaa252b2 63e71130-Oregon e85b-4d86-1927 1 7928 a09AT#X5⁻41CH2⁻-9F State 9 Peyton Suess -432401 Attack # 8e9d-University 9d5abaa252b2 63e71130-

Stanford

University

10

Kendall Kipp

-282546 Attack

7962

1

*10AT-X5⁻47AH2⁻+9F

Features (86)

Time Steps (2100-3000)

Some Visualizations

Coordinates of Volleyball End Zone for Attacks

Coordinates of Volleyball Start Zone for Attacks

Goal

- Provide helpful insights for the coach

Leverage deep learning techniques to analyze volleyball data
Gap: The power of new emerging advanced DL

VS

Many people still use statistical methods on volleyball data

Objective of Modeling

Use some information about a match to predict the number of winning attacks of both home and away teams.

Inputs:

Manually select 37 features that may have potential influence on the number of winning attacks.

Output:

The total number of winning attacks of home team and away team.

Fundamentals of Deep Learning

Neural networks are the underlying technology in deep learning

Multilayer Perceptron(MLP)

Learning Performance

Drawbacks

Flatten the input -> Not fully taking advantage of the sequential nature of the data

Recurrent Neural Network(RNN)

The input is Sequential! -> an additional dimension for timestep

Across Timestep T

Learning Performance

However...

When we test the model on the test set, it always give us the same output regardless of the inputs

Potential Reason 1:

The number of training data points (629 games) is way less than the sequence length/total number of time steps (nearly 3000).

Potential Reason 2:

Vanishing gradient due to large sequence length and the nature of RNN

Weixuan's New Approach

The number of home team's winning attacks = the total number of attacks that are home team's winning attacks

New Idea:

- 1. Extract the timepoints where an attack happens in one match
- 2. For each attack, predict whether it is a winning attack of the home team or not: 1- yes; 0 no
- 3. Finally sum up all the outputs, which should be the total # of winning attack of the home team

Now 260 data points vs 37 features

Notice that it also breaks the sequential nature of the data

Input

Step 1: Training Dataset:

First 80% of Attack data

Step 2:

Test the model on the remaining 20% of data

Step 3 Inputs: all attacks data Outputs: 2 arrays of binary numbers

Step 4: Sum up all elements in each array

Learning Performance

For one file

Average Across Ten Files

Test Accuracy: 78.84%

Mean Square Loss of the number of winning attacks: 36

Minh's New Approach

Idea: (Using MLP)

Instead of using the whole game data, for each game, use all sequences that lead to an attack (Dig \rightarrow Set \rightarrow Attack).

Inputs: a 2-timepoints corresponding to Dig and Set. (In some cases, where there is only a Dig or a Set, I perform padding)

Output: whether the following attack would be a winning attack or not (0 or 1)

Data Pre-processing

- Number of data points: 28901 attacks (from Pac 12 only)
- Use One-Hot Encoding instead of Label Encoding.
- \Rightarrow Now we have 194 features.
- Some attacks only have a dig/set preceding them
- ⇒ Perform padding

Model

The hidden size is ReLU ReLU 500. Sigmoid + 53 Output Layer Input Layer First Hidden Second Hidden Third Hidden Layer Layer Layer

Learning loss

Note: This only show the first 2500 epochs, I continue training them till 6000 epochs

Predicted labels

How we envision this being used

- 1. We provide trained model to coach
- 2. After game, they process video to .dvw file
- 3. Extract sequences preceding attacks
- 4. Predict attack outcomes for each sequence \rightarrow This give expected kills (xK) for a game
- 5. Compare to actual game results \rightarrow Analyze whether they under- or over-performed

Future Work

- The current model is only trained on PAC-12 data because of limited computational power. (Google Colab)
- Better data pre-processing for the model
- Determined which features that the model considered as more important, in order to make suggestions for the coach

Our Takeaways from DRP

- Learned new Neural Network Architectures (MLP, RNN)
- Understand the math behind the model we selected (activation function, gradient descend, back propagation,...)
- Better understanding of how to apply deep learning techniques to sports data

