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The First Limit Theorem (c. 1713)

e Jacob Bernoulli (1713) studied an
independent urn model:

)1 (white ball, probability p),
‘)0 (black ball, probability 1 — p).

JAC. BERNOULLI, MATH.P}
Jacob Bernoulli
(1654-1705)
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The First Limit Theorem (c. 1713)

e Jacob Bernoulli (1713) studied an
independent urn model:

)1 (white ball, probability p),
‘)0 (black ball, probability 1 — p).

o He proved:

n
Pr(‘lg Xi—p‘>€> — 0. : o
n - JAC. BERNOULLI,MATH.P.

=

Jacob Bernoulli
(1654-1705)
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The First Limit Theorem (c. 1713)

e Jacob Bernoulli (1713) studied an
independent urn model:

)1 (white ball, probability p),
‘)0 (black ball, probability 1 — p).

o He proved:
n 3
Pr(‘% ZXi -7/ > E) — 0 JAC. BERNOULLI, MATH.PI
= Jacob Bernoulli
e Prototype for Weak Law of Large (1654-1705)

Numbers (WLLN)
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The First Limit Theorem (c. 1713)

Jacob Bernoulli (1713) studied an
independent urn model:

)1 (white ball, probability p),
‘)0 (black ball, probability 1 — p).

o He proved:

1 o
Pr(‘” ;XZ vl > E) — 0 JAC. BERNOULLL, MATH.PI
=
Jacob Bernoulli
e Prototype for Weak Law of Large (1654-1705)

Numbers (WLLN)

o First ever limit theorem of probability
theory.
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De Moivre and Laplace: The Proto-CLT (c. 1738-1810)

e Abraham De Moivre (c. 1738) observed that for X; = +1 (fair
coin), the distribution of S, = Y | X; approximates a bell curve
when n is large.
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De Moivre and Laplace: The Proto-CLT (c. 1738-1810)

e Abraham De Moivre (c. 1738) observed that for X; = +1 (fair
coin), the distribution of S, = Y | X; approximates a bell curve
when n is large.

e Pierre-Simon Laplace (1810) made this precise for
independent Bernoulli(p) trials:

Pr <7Sn _ P

r ) <$) — ®(x), n — oo,

where ® is the standard normal CDF.
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De Moivre and Laplace: The Proto-CLT (c. 1738-1810)

e Abraham De Moivre (c. 1738) observed that for X; = +1 (fair
coin), the distribution of S, = Y | X; approximates a bell curve
when n is large.

e Pierre-Simon Laplace (1810) made this precise for
independent Bernoulli(p) trials:

Pr <7Sn _ P

r ) <$) — ®(x), n — oo,

where @ is the standard normal CDF.
e First glimpse of the Central Limit Theorem (CLT).
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De Moivre and Laplace

* Abraham De Moivre *Pierre-Simon Laplace
(1667-1754) (1749-1827)
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Classical Limit Theorems for Independent Sums

e Law of Large Numbers (LLN). If {X;} i.i.d. with E[|X|] < oo,

1 < P
EZXi = E[X1].
=1
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Classical Limit Theorems for Independent Sums

e Law of Large Numbers (LLN). If {X;} i.i.d. with E[|X;]|] < 0o
- ZX L Elxy).

e Central Limit Theorem (CLT). If {X;} i.i.d. with E[X;] =
and Var(X;) = 02 < oo,

2icy Xi —np 4
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Classical Limit Theorems for Independent Sums

e Law of Large Numbers (LLN). If {X;} i.i.d. with E[|X|] < oo,
1 < P
- > X = E[X4).
i=1

e Central Limit Theorem (CLT). If {X;} i.i.d. with E[X;] = p
and Var(X;) = 02 < oo,

n

s

Lz Xi—np 4 N(0,1).
U\/ﬁ

@ By the mid-19th century, foundational results like the LLN and
CLT were only proven under i.i.d. assumptions.
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The Centrality of Independence

e From Bernoulli to Laplace to Chebyshev, classical probability
focused on sums of independent random variables and their
asymptotic behavior.
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The Centrality of Independence

e From Bernoulli to Laplace to Chebyshev, classical probability
focused on sums of independent random variables and their
asymptotic behavior.

o Independence was the dominant assumption in probability.
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Pavel Nekrasov: Independence and Ideology

e Pavel Nekrasov (1853-1924):
theologian turned probabilist, later Dean
at Moscow University.

* Pavel A. Nekrasov
(1853-1924)
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Pavel Nekrasov: Independence and Ideology

e Pavel Nekrasov (1853-1924):
theologian turned probabilist, later Dean
at Moscow University.

o Falsely claimed independence is a

necessary and sufficient condition for
LLN to hold.

* Pavel A. Nekrasov
(1853-1924)
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Pavel Nekrasov: Independence and Ideology

e Pavel Nekrasov (1853-1924):
theologian turned probabilist, later Dean
at Moscow University.

o Falsely claimed independence is a
necessary and sufficient condition for
LLN to hold.

e Using this false claim, argued LLN is
proof of human free will. (777)

* Pavel A. Nekrasov
(1853-1924)
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Andrey Markov: From Independence to Dependence

e Andrey A. Markov (1856-1922):
Student of Chebyshev.

*Andrey A. Markov
(1856-1922)
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Andrey Markov: From Independence to Dependence

e Andrey A. Markov (1856-1922):
Student of Chebyshev.

@ Deeply opposed Nekrasov’s theological

framing of probability and his
philosophical insistence on independence.

*Andrey A. Markov
(1856-1922)
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Andrey Markov: From Independence to Dependence

e Andrey A. Markov (1856-1922):
Student of Chebyshev.

@ Deeply opposed Nekrasov’s theological
framing of probability and his
philosophical insistence on independence.

e In 1906, introduced what we now call
Markov chains, showing LLN and CLT
can hold under certain types of
dependence.

*Andrey A. Markov
(1856-1922)
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Markov’s Refutation (1906)

@ “The unique service of P. A. Nekrasov, in my opinion, is namely
this: he brings out sharply his delusion, shared, I believe, by many,
that independence is a necessary condition for the law of large
numbers. This prompted me to explain... that the [LLN]
and [CLT] can apply also to dependent variables."

Jian and Bhaumik Martingales: History and a Limit The June 11, 2025



Definition: Markov Chains (Markov, 19

A process { Xy, }n>0 is a Markov chain if, for all n, i, j,

PI‘(Xn_H :j | Xn = ’i, Xn—l; N ,X()) = PI‘(XTL_H :j | Xn = ’i),
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Definition: Markov Chains (Markov, 1906

A process { Xy, }n>0 is a Markov chain if, for all n, i, j,

PI‘(Xn_H :j | Xn = ’i, Xn—l; N ,X()) = PI‘(XTL_H :j | Xn = ’i),

"In this way a construction of a highly general character was actually
arrived at, which P. A. Nekrasov can not even dream about."
—Markov
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Markov’s Law of Large Numbers (1906)

Markov Chain LLN (Markov, 1906): Suppose {X,,} irreducible
and aperiodic, with stationary distribution 7. Then, for bounded f,

SR D B
k=1
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Markov’s Law of Large Numbers (1906)

Markov Chain LLN (Markov, 1906): Suppose {X,,} irreducible
and aperiodic, with stationary distribution 7. Then, for bounded f,

SR D B
k=1

First limit theorem for a sequence of dependent random variables.

Jian and Bhaumik
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Markov Chains: A Simple Dependent Example

e Markov Chain LLN (Markov, 1906): Suppose {X,,}
irreducible and aperiodic, with stationary distribution 7. Then, for
bounded f,

LS B R
k=1
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Markov Chains: A Simple Dependent Example

e Markov Chain LLN (Markov, 1906): Suppose {X,,}
irreducible and aperiodic, with stationary distribution 7. Then, for
bounded f,

1 — P
LS B R
k=1
o In that proof, Markov effectively wrote

E[ f(Xk) | Xk—1] = “predictable part” at step k,

and then controlled the residuals.
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Markov Chains: A Simple Dependent Example

e Markov Chain LLN (Markov, 1906): Suppose {X,,}
irreducible and aperiodic, with stationary distribution 7. Then, for
bounded f,

1 — P
LS B R
k=1
o In that proof, Markov effectively wrote

E[ f(Xk) | Xk—1] = “predictable part” at step k,

and then controlled the residuals.

o Thus, rather than summing i.i.d. terms, he subtracted a one-step
conditional mean and showed the remainder converged.
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Markov Chains: A Simple Dependent Example

Markov Chain LLN (Markov, 1906): Suppose {X,}
irreducible and aperiodic, with stationary distribution 7. Then, for
bounded f,

1 — P
LS B R
k=1
In that proof, Markov effectively wrote

E[ f(Xk) | Xk—1] = “predictable part” at step k,

and then controlled the residuals.

Thus, rather than summing i.i.d. terms, he subtracted a one-step
conditional mean and showed the remainder converged.

Lévy recognized this as a template for handling any sequence
where a predictable conditional mean is known.
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Paul Leévy

e Paul Lévy (1886-1971): Big-time
probabilist.

*Paul Lévy (1886-1971)
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Paul Leévy

e Paul Lévy (1886-1971): Big-time
probabilist.

o Contributions: Early martingales,
characteristic functions, stable laws,
early stochastic processes, etc.

*Paul Lévy (1886-1971)
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Paul Leévy

e Paul Lévy (1886-1971): Big-time
probabilist.

o Contributions: Early martingales,
characteristic functions, stable laws,
early stochastic processes, etc.

o Wanted a general approach to
extending limit theorems to
dependent sequences.

*Paul Lévy (1886-1971)

Jian and Bhaumik Martingales: History and a Limit The June 11, 2025



Lévy’s Approach

@ Suppose you have a sequence of random variables X1, Xo, ..., not
necessarily identical.
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's Approach

@ Suppose you have a sequence of random variables X1, Xo, ..., not
necessarily identical.

o At step k, you know everything that happened in the past:
X1, Xk 1.
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's Approach

@ Suppose you have a sequence of random variables X1, Xo, ..., not
necessarily identical.

o At step k, you know everything that happened in the past:
X1y, X q.

e You can form a prediction my, = E[X} | X1,..., Xp—1].
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Lévy’s Approach

@ Suppose you have a sequence of random variables X1, Xo, ..., not
necessarily identical.

o At step k, you know everything that happened in the past:
X1, Xp
e You can form a prediction my, = E[X} | X1,..., Xp—1].

e Lévy subtracted this prediction from Xj, then considered the
leftover:
X — my.
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e Lévy then set up the "compensated sum" by summing up the
"leftovers",

M, = i(Xk —mk).

k=1

so each increment is

My — M1 = X — mg.
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's Approach

o Lévy (1934). If
supE[\Mn” < o0,

then M,, converges almost surely to a finite limit M.
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Lévy’s Approach

o Lévy (1934). If
supE[ [M,|] < oo,
n
then M,, converges almost surely to a finite limit M.

Very roughly,
o When my = E[X}], this recovers the classical LLN.
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Lévy’s Approach

o Lévy (1934). If
supE[\Mn” < o0,

then M,, converges almost surely to a finite limit M.

Very roughly,

o When my = E[X}], this recovers the classical LLN.
o When my = E[X}, | Xk—1], this recovers Markov’s LLN.
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Lévy’s Approach

o Lévy (1934). If
supE[\Mn” < o0,

then M,, converges almost surely to a finite limit M.

Very roughly,
o When my = E[X}], this recovers the classical LLN.
o When my = E[X}, | Xk—1], this recovers Markov’s LLN.
o Lévy’s compensated-sum approach unified independent and
Markov limit theorems for sums.
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First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by
construction,

E[Mk - Mk,1 | fkfl] = E[Xk — Mg | fkfl] = 0.
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First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by
construction,

E[Mk - Mk,1 | fkfl] = E[Xk — Mg | fkfl] = 0.

So {M,,} satisfies
E[ My | Fn] = Ma,
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First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by
construction,

E[Mk - Mk,1 | kal] = E[Xk — Mg | fkfl] = 0.

So {M,,} satisfies
E[ My | Fn] = Ma,

which is exactly the martingale property.
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Jean Ville: Defining Martingales in Games of Chance

(1939)

e Jean Ville (1910-1988) coined the term martingale in his 1939
thesis, inspired by Lévy’s approach to getting limit theorems for
dependent sums.
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Jean Ville: Defining Martingales in Games of Chance

(1939)

e Jean Ville (1910-1988) coined the term martingale in his 1939
thesis, inspired by Lévy’s approach to getting limit theorems for
dependent sums.

e Martingale definition (Ville): A sequence {M,} is a
martingale if

E[Myi1 | Fo] = My,

regardless of whether M,, arises from sums, products, or more
general operations.
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Jean Ville: Defining Martingales in Games of Chance

(1939)

e Jean Ville (1910-1988) coined the term martingale in his 1939
thesis, inspired by Lévy’s approach to getting limit theorems for
dependent sums.

e Martingale definition (Ville): A sequence {M,} is a
martingale if

E[Myi1 | Fo] = My,

regardless of whether M,, arises from sums, products, or more
general operations.

e Ville emphasized that no special form (sum/product) is
needed: any process satisfying the conditional-expectation
property qualifies.
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Joseph L. Doob: Martingales in a Measure-Theoretic

Framework (1940s)

e Joseph L. Doob (1910-2004) systematically developed
martingale theory using measure theory and filtrations (F,).
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Joseph L. Doob: Martingales in a Measure-Theoretic

Framework (1940s)

e Joseph L. Doob (1910-2004) systematically developed
martingale theory using measure theory and filtrations (F,).

General definition

A sequence {M,,} of integrable random variables is a martingale if

M, is F,-measurable and E[Mn+1 ] ]-'n] =M, as.
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Joseph L. Doob: Martingales in a Measure-Theoretic

Framework (1940s)

e Joseph L. Doob (1910-2004) systematically developed
martingale theory using measure theory and filtrations (F,).

General definition

A sequence {M,,} of integrable random variables is a martingale if

M, is F,-measurable and E[Mn+1 ] ]-'n] =M, as.

e Doob’s Martingale Convergence Theorem (1940): If {M,,}
is a martingale with sup,, E[|M,|] < oo, then M,, converges almost
surely.
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Ville and Doob

*Joseph L. Doob

*Jean Ville (1910-1989) (1910-2004)
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Doob’s Convergence Theorem

Theorem

Let M, be a martingale with

sup E[|M,|] < co.
n>0

Then there exists My, such that

M, =2 M.
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Doob’s Convergence Theorem

Theorem

Let M, be a martingale with

sup E[|M,|] < co.
n>0

Then there exists My, such that

M, =2 M.

@ Proof strategy: bound the number of significant oscillations
(upcrossings) to check convergence.
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Doob’s Convergence Theorem

Theorem

Let M, be a martingale with

sup E[|M,|] < co.
n>0

Then there exists My, such that

M, =2 M.

@ Proof strategy: bound the number of significant oscillations
(upcrossings) to check convergence.

o Key idea: Martingales can "buy low, sell high" only finitely many
times.
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Upcrossings: Formalizing Swings

e Fix two levels a < b. An upcrossing is one complete swing from at
or below a up to at or above b.
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Upcrossings: Formalizing Swings

e Fix two levels a < b. An upcrossing is one complete swing from at
or below a up to at or above b.

e Let Uy, (a,b) denote the number of upcrossings by time n.

Ny Ny
L b
* A
d ‘ <\
a M N3 N;
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Upcrossings: Formalizing Swings

o Intuitively, we "buy" the stock if the price falls below a, then "sell"
once the price reaches above b.
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Upcrossings: Formalizing Swings

o Intuitively, we "buy" the stock if the price falls below a, then "sell"
once the price reaches above b.

o Number of upcrossings is how many times we "buy low, sell high".

Ny Ny

a N1 N3 N5
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Doob’s Upcrossing Lemma

Let (M,,) be a martingale. For any a < b,

(b—a)E[Un(a, )] <E[(My, —a)”] - E[(Mo — a)7].
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Doob’s Upcrossing Lemma

Let (M,,) be a martingale. For any a < b,

(b—a)E[Un(a, )] <E[(My, —a)”] - E[(Mo — a)7].

o Key takeaway: Since sup,,>( E[|M,|] < oo by assumption, RHS is
finite, so the expected number of upcrossings is finite.
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Why Finite Upcrossings Imply Convergence

e For any a < b, we showed E[Ux(a,b)] < 0.

N, Ny

a N1 N3 N5
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Why Finite Upcrossings Imply Convergence

e For any a < b, we showed E[Ux(a,b)] < 0.
e This implies Uy (a,b) < oo a.s.
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Why Finite Upcrossings Imply Convergence

e For any a < b, we showed E[Ux(a,b)] < 0.
e This implies Uy (a,b) < oo a.s.

@ So M, can only cross between any a < b finitely often a.s.

Ny Ny

’ ’
: A
7 : N
(lNl N3 N5
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Why Finite Upcrossings Imply Convergence

e That is, eventually M,, stays within any given interval.

Sample Path of a Convergent Martingale

15

1.0

0.5

0.0

-0.5
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Why Finite Upcrossings Imply Convergence

e That is, eventually M,, stays within any given interval.

e Since M, stays within an arbitrarily small interval after some time,
every sample path converges, i.e., M,, converges a.s. to some M.

Sample Path of a Convergent Martingale

15

1.0

0.5

0.0

-0.5
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tingale a.s. Convergence

Sample Path of a Convergent Martingale

2.0r

1.5

1.0f

N

0.5

0.0}

-0.5

0 100 200 300 400 500
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Key Ideas Summarized

e Upcrossings count significant oscillations.
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Key Ideas Summarized

e Upcrossings count significant oscillations.

o Upcrossing lemma bounds the expected count of these
oscillations using boundedness of the martingale.
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Key Ideas Summarized

e Upcrossings count significant oscillations.

o Upcrossing lemma bounds the expected count of these
oscillations using boundedness of the martingale.

e Almost-sure convergence follows by ruling out infinite
oscillations between any two levels.
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Martingale Convergence Theorem Revisited

Let M, be a martingale with

sup E[|M,|] < oco.
n>0

Then there exists My, such that

M, =25 M.
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Thank you!
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