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The First Limit Theorem (c. 1713)

Jacob Bernoulli (1713) studied an
independent urn model:

Xi =

{
1 (white ball, probability p),

0 (black ball, probability 1− p).

He proved:

Pr
(∣∣ 1

n

n∑
i=1

Xi − p
∣∣ > ε

)
−→ 0.

Prototype for Weak Law of Large
Numbers (WLLN)
First ever limit theorem of probability
theory.

Jacob Bernoulli
(1654–1705)
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De Moivre and Laplace: The Proto-CLT (c. 1738–1810)

Abraham De Moivre (c. 1738) observed that for Xi = ±1 (fair
coin), the distribution of Sn =

∑n
i=1Xi approximates a bell curve

when n is large.

Pierre-Simon Laplace (1810) made this precise for
independent Bernoulli(p) trials:

Pr
( Sn − np√

np(1− p)
≤ x

)
−→ Φ(x), n → ∞,

where Φ is the standard normal CDF.
First glimpse of the Central Limit Theorem (CLT).
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De Moivre and Laplace

*Abraham De Moivre
(1667–1754)

*Pierre-Simon Laplace
(1749–1827)
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Classical Limit Theorems for Independent Sums

Law of Large Numbers (LLN). If {Xi} i.i.d. with E[|X1|] < ∞,

1

n

n∑
i=1

Xi
P−→ E[X1].

Central Limit Theorem (CLT). If {Xi} i.i.d. with E[X1] = µ
and Var(X1) = σ2 < ∞,∑n

i=1Xi − nµ

σ
√
n

d−→ N(0, 1).

By the mid-19th century, foundational results like the LLN and
CLT were only proven under i.i.d. assumptions.
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The Centrality of Independence

From Bernoulli to Laplace to Chebyshev, classical probability
focused on sums of independent random variables and their
asymptotic behavior.

Independence was the dominant assumption in probability.
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Pavel Nekrasov: Independence and Ideology

Pavel Nekrasov (1853–1924):
theologian turned probabilist, later Dean
at Moscow University.

Falsely claimed independence is a
necessary and sufficient condition for
LLN to hold.
Using this false claim, argued LLN is
proof of human free will. (???)

* Pavel A. Nekrasov
(1853–1924)
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Andrey Markov: From Independence to Dependence

Andrey A. Markov (1856–1922):
Big-time probabilist. Student of
Chebyshev, another big-time probabilist.

Deeply opposed Nekrasov’s theological
framing of probability and his
philosophical insistence on independence.
In 1906, introduced what we now call
Markov chains, showing LLN and CLT
can hold under certain types of
dependence.

*Andrey A. Markov
(1856–1922)
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Markov’s Refutation (1906)

“The unique service of P. A. Nekrasov, in my opinion, is namely
this: he brings out sharply his delusion, shared, I believe, by many,
that independence is a necessary condition for the law of large
numbers. This prompted me to explain. . . that the [LLN]
and [CLT] can apply also to dependent variables."
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Definition: Markov Chains (Markov, 1906)

Definition
A process {Xn}n≥0 is a Markov chain if, for all n, i, j,

Pr(Xn+1 = j | Xn = i, Xn−1, . . . , X0) = Pr(Xn+1 = j | Xn = i),

"In this way a construction of a highly general character was actually
arrived at, which P. A. Nekrasov can not even dream about."
–Markov
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Markov’s Law of Large Numbers (1906)

Markov Chain LLN (Markov, 1906): Suppose {Xn} irreducible
and aperiodic, with stationary distribution π. Then, for bounded f ,

1

n

n∑
k=1

f(Xk)
P−→ Eπ[f ].

First limit theorem for a sequence of dependent random variables.
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Markov Chains: A Simple Dependent Example

Markov Chain LLN (Markov, 1906): Suppose {Xn}
irreducible and aperiodic, with stationary distribution π. Then, for
bounded f ,

1

n

n∑
k=1

f(Xk)
P−→ Eπ[f ].

In that proof, Markov effectively wrote

E[ f(Xk) | Xk−1] = “predictable part” at step k,

and then controlled the residuals.
Thus, rather than summing i.i.d. terms, he subtracted a one-step
conditional mean and showed the remainder converged.
Lévy recognized this as a template for handling any sequence
where a predictable conditional mean is known.
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Paul Lévy

*Paul Lévy (1886–1971)

Paul Lévy (1886–1971): Big-time
probabilist.

Contributions: Early martingales,
characteristic functions, stable laws,
early stochastic processes, etc.
Wanted a general approach to
extending limit theorems to
dependent sequences.
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Lévy’s Approach

Suppose you have a sequence of random variables X1, X2, . . ., not
necessarily identical.

At step k, you know everything that happened in the past:
X1, . . . , Xk−1.
You can form a prediction mk = E[Xk | X1, . . . , Xk−1].
Lévy subtracted this prediction from Xk, then considered the
leftover:

Xk −mk.
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Lévy’s Approach

Lévy then set up the "compensated sum" by summing up the
"leftovers",

Mn =

n∑
k=1

(
Xk −mk

)
.

so each increment is

Mk −Mk−1 = Xk −mk.
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Lévy’s Approach

Theorem (Lévy, 1934). If

sup
n

E
[
|Mn|

]
< ∞,

then Mn converges almost surely to a finite limit M∞.

Very roughly,
When mk = E[Xk], this recovers the classical LLN.
When mk = E[Xk | Xk−1], this recovers Markov’s LLN.

Lévy’s compensated-sum approach unified independent and
Markov limit theorems for sums.
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First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by
construction,

E
[
Mk −Mk−1 | Fk−1

]
= E

[
Xk −mk | Fk−1

]
= 0.

So {Mn} satisfies
E[Mn+1 | Fn ] = Mn,

which is exactly the martingale property.
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Jean Ville: Defining Martingales in Games of Chance
(1939)

Jean Ville (1910–1988) coined the term martingale in his 1939
thesis, inspired by Lévy’s approach to getting limit theorems for
dependent sums.

Martingale definition (Ville): A sequence {Mn} is a
martingale if

E
[
Mn+1 | Fn

]
= Mn,

regardless of whether Mn arises from sums, products, or more
general operations.
Ville emphasized that no special form (sum/product) is
needed: any process satisfying the conditional-expectation
property qualifies.
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Joseph L. Doob: Martingales in a Measure-Theoretic
Framework (1940s)

Joseph L. Doob (1910–2004) systematically developed
martingale theory using measure theory and filtrations (Fn).

General definition
A sequence {Mn} of integrable random variables is a martingale if

Mn is Fn-measurable and E
[
Mn+1 | Fn

]
= Mn a.s.

Doob’s Martingale Convergence Theorem (1940): If {Mn}
is a martingale with supn E[ |Mn| ] < ∞, then Mn converges almost
surely.
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Ville and Doob

*Jean Ville (1910–1989) *Joseph L. Doob
(1910–2004)
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Doob’s Convergence Theorem

Theorem
Let Mn be a martingale with

sup
n≥0

E[|Mn|] < ∞.

Then there exists M∞ such that

Mn
a.s.−−→ M∞.

Proof strategy: bound the number of significant oscillations
(upcrossings) to check convergence.
Key idea: Martingales can "buy low, sell high" only finitely many
times.
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Upcrossings: Formalizing Swings

Fix two levels a < b. An upcrossing is one complete swing from at
or below a up to at or above b.

Let Un(a, b) denote the number of upcrossings by time n.
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Intuitively, we "buy" the stock if the price falls below a, then "sell"
once the price reaches above b.
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Doob’s Upcrossing Lemma

Lemma
Let (Mn) be a martingale. For any a < b,

(b− a)E[Un(a, b)] ≤ E[(Mn − a)−]− E[(M0 − a)−].

Key takeaway: Since supn≥0 E[|Mn|] < ∞ by assumption, RHS is
finite, so the expected number of upcrossings is finite.
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Why Finite Upcrossings Imply Convergence

For any a < b, we showed E[U∞(a, b)] < ∞.

This implies U∞(a, b) < ∞ a.s.
So Mn can only cross between any a < b finitely often a.s.
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Why Finite Upcrossings Imply Convergence

That is, eventually Mn stays within some interval.

Since Mn stays within an arbitrarily small interval after some time,
every sample path converges, i.e., Mn converges a.s. to some M∞.

Jian and Bhaumik Martingales: History and a Limit Theorem June 14, 2025 27 / 33



Why Finite Upcrossings Imply Convergence

That is, eventually Mn stays within some interval.
Since Mn stays within an arbitrarily small interval after some time,
every sample path converges, i.e., Mn converges a.s. to some M∞.

Jian and Bhaumik Martingales: History and a Limit Theorem June 14, 2025 27 / 33



Visual of Martingale a.s. Convergence
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Key Ideas Summarized

Upcrossings count significant oscillations.

Upcrossing lemma bounds the expected count of these
oscillations using boundedness of the martingale.
Almost-sure convergence follows by ruling out infinite
oscillations between any two levels.

Jian and Bhaumik Martingales: History and a Limit Theorem June 14, 2025 29 / 33



Key Ideas Summarized

Upcrossings count significant oscillations.
Upcrossing lemma bounds the expected count of these
oscillations using boundedness of the martingale.

Almost-sure convergence follows by ruling out infinite
oscillations between any two levels.

Jian and Bhaumik Martingales: History and a Limit Theorem June 14, 2025 29 / 33



Key Ideas Summarized

Upcrossings count significant oscillations.
Upcrossing lemma bounds the expected count of these
oscillations using boundedness of the martingale.
Almost-sure convergence follows by ruling out infinite
oscillations between any two levels.

Jian and Bhaumik Martingales: History and a Limit Theorem June 14, 2025 29 / 33



Martingale Convergence Theorem Revisited

Theorem
Let Mn be a martingale with

sup
n≥0

E[|Mn|] < ∞.

Then there exists M∞ such that

Mn
a.s.−−→ M∞.
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