Martingales: History and a Limit Theorem

Jian Kang and Bhaumik Mehta

University of Washington Statistics Directed Reading Program

June 14, 2025

Contents

- Introduction
- 2 Bernoulli and the First LLN
- 3 De Moivre–Laplace Central Limit Idea
- 4 Independence
- 5 Markov Chains: The Nekrasov Dispute
- 6 Lévy and the Birth of Martingales
- 7 From Sums to General Martingales
- 8 Martingale Convergence Theorem
- References

• Jacob Bernoulli (1713) studied an independent urn model:

$$X_i = \begin{cases} 1 & \text{(white ball, probability } p), \\ 0 & \text{(black ball, probability } 1 - p). \end{cases}$$

Jacob Bernoulli (1654–1705)

• Jacob Bernoulli (1713) studied an independent urn model:

$$X_i = \begin{cases} 1 & \text{(white ball, probability } p), \\ 0 & \text{(black ball, probability } 1 - p). \end{cases}$$

• He proved:

$$\Pr\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right|>\varepsilon\right)\longrightarrow 0.$$

Jacob Bernoulli (1654–1705)

• Jacob Bernoulli (1713) studied an independent urn model:

$$X_i = \begin{cases} 1 & \text{(white ball, probability } p), \\ 0 & \text{(black ball, probability } 1 - p). \end{cases}$$

• He proved:

$$\Pr\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right|>\varepsilon\right)\longrightarrow 0.$$

• Prototype for Weak Law of Large Numbers (WLLN)

Jacob Bernoulli (1654–1705)

• Jacob Bernoulli (1713) studied an independent urn model:

$$X_i = \begin{cases} 1 & \text{(white ball, probability } p), \\ 0 & \text{(black ball, probability } 1 - p). \end{cases}$$

• He proved:

$$\Pr\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right|>\varepsilon\right)\longrightarrow 0.$$

- Prototype for Weak Law of Large Numbers (WLLN)
- First ever limit theorem of probability theory.

Jacob Bernoulli (1654–1705)

De Moivre and Laplace: The Proto-CLT (c. 1738–1810)

• Abraham De Moivre (c. 1738) observed that for $X_i = \pm 1$ (fair coin), the distribution of $S_n = \sum_{i=1}^n X_i$ approximates a bell curve when n is large.

De Moivre and Laplace: The Proto-CLT (c. 1738–1810)

- Abraham De Moivre (c. 1738) observed that for $X_i = \pm 1$ (fair coin), the distribution of $S_n = \sum_{i=1}^n X_i$ approximates a bell curve when n is large.
- Pierre-Simon Laplace (1810) made this precise for independent Bernoulli(p) trials:

$$\Pr\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le x\right) \longrightarrow \Phi(x), \quad n \to \infty,$$

where Φ is the standard normal CDF.

De Moivre and Laplace: The Proto-CLT (c. 1738–1810)

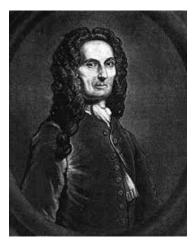
- Abraham De Moivre (c. 1738) observed that for $X_i = \pm 1$ (fair coin), the distribution of $S_n = \sum_{i=1}^n X_i$ approximates a bell curve when n is large.
- Pierre-Simon Laplace (1810) made this precise for independent Bernoulli(p) trials:

$$\Pr\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le x\right) \longrightarrow \Phi(x), \quad n \to \infty,$$

where Φ is the standard normal CDF.

• First glimpse of the Central Limit Theorem (CLT).

De Moivre and Laplace



*Abraham De Moivre (1667–1754)

*Pierre-Simon Laplace (1749–1827)

Classical Limit Theorems for Independent Sums

• Law of Large Numbers (LLN). If $\{X_i\}$ i.i.d. with $\mathbb{E}[|X_1|] < \infty$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mathbb{E}[X_1].$$

Classical Limit Theorems for Independent Sums

• Law of Large Numbers (LLN). If $\{X_i\}$ i.i.d. with $\mathbb{E}[|X_1|] < \infty$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mathbb{E}[X_1].$$

• Central Limit Theorem (CLT). If $\{X_i\}$ i.i.d. with $\mathbb{E}[X_1] = \mu$ and $\text{Var}(X_1) = \sigma^2 < \infty$,

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} N(0,1).$$

Classical Limit Theorems for Independent Sums

• Law of Large Numbers (LLN). If $\{X_i\}$ i.i.d. with $\mathbb{E}[|X_1|] < \infty$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mathbb{E}[X_1].$$

• Central Limit Theorem (CLT). If $\{X_i\}$ i.i.d. with $\mathbb{E}[X_1] = \mu$ and $\text{Var}(X_1) = \sigma^2 < \infty$,

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} N(0,1).$$

• By the mid-19th century, foundational results like the LLN and CLT were only proven under i.i.d. assumptions.

The Centrality of Independence

 From Bernoulli to Laplace to Chebyshev, classical probability focused on sums of independent random variables and their asymptotic behavior.

The Centrality of Independence

- From Bernoulli to Laplace to Chebyshev, classical probability focused on sums of independent random variables and their asymptotic behavior.
- Independence was the dominant assumption in probability.

Pavel Nekrasov: Independence and Ideology

• Pavel Nekrasov (1853–1924): theologian turned probabilist, later Dean at Moscow University.

* Pavel A. Nekrasov (1853–1924)

Pavel Nekrasov: Independence and Ideology

- Pavel Nekrasov (1853–1924): theologian turned probabilist, later Dean at Moscow University.
- Falsely claimed independence is a necessary and sufficient condition for LLN to hold.

* Pavel A. Nekrasov (1853–1924)

Pavel Nekrasov: Independence and Ideology

- Pavel Nekrasov (1853–1924): theologian turned probabilist, later Dean at Moscow University.
- Falsely claimed independence is a necessary and sufficient condition for LLN to hold.
- Using this false claim, argued LLN is proof of human free will. (???)

* Pavel A. Nekrasov (1853–1924)

Andrey Markov: From Independence to Dependence

• Andrey A. Markov (1856–1922): Big-time probabilist. Student of Chebyshev, another big-time probabilist.

*Andrey A. Markov (1856–1922)

Andrey Markov: From Independence to Dependence

- Andrey A. Markov (1856–1922): Big-time probabilist. Student of Chebyshev, another big-time probabilist.
- Deeply opposed Nekrasov's theological framing of probability and his philosophical insistence on independence.

*Andrey A. Markov (1856–1922)

Andrey Markov: From Independence to Dependence

- Andrey A. Markov (1856–1922): Big-time probabilist. Student of Chebyshev, another big-time probabilist.
- Deeply opposed Nekrasov's theological framing of probability and his philosophical insistence on independence.
- In 1906, introduced what we now call **Markov chains**, showing LLN and CLT can hold under certain types of dependence.

*Andrey A. Markov (1856–1922)

Markov's Refutation (1906)

• "The unique service of P. A. Nekrasov, in my opinion, is namely this: he brings out sharply his delusion, shared, I believe, by many, that independence is a necessary condition for the law of large numbers. This prompted me to explain... that the [LLN] and [CLT] can apply also to dependent variables."

Definition: Markov Chains (Markov, 1906)

Definition

A process $\{X_n\}_{n\geq 0}$ is a Markov chain if, for all n, i, j,

$$\Pr(X_{n+1} = j \mid X_n = i, X_{n-1}, \dots, X_0) = \Pr(X_{n+1} = j \mid X_n = i),$$

Definition: Markov Chains (Markov, 1906)

Definition

A process $\{X_n\}_{n\geq 0}$ is a Markov chain if, for all n, i, j,

$$\Pr(X_{n+1} = j \mid X_n = i, X_{n-1}, \dots, X_0) = \Pr(X_{n+1} = j \mid X_n = i),$$

"In this way a construction of a highly general character was actually arrived at, which P. A. Nekrasov can not even dream about."

—Markov

Markov's Law of Large Numbers (1906)

Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \stackrel{\mathrm{P}}{\to} \mathbb{E}_{\pi}[f].$$

Markov's Law of Large Numbers (1906)

Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow{P} \mathbb{E}_{\pi}[f].$$

First limit theorem for a sequence of **dependent** random variables.

• Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow{P} \mathbb{E}_{\pi}[f].$$

• Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow{P} \mathbb{E}_{\pi}[f].$$

• In that proof, Markov effectively wrote

$$\mathbb{E}[f(X_k) \mid X_{k-1}] =$$
 "predictable part" at step k ,

and then controlled the residuals.

• Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \xrightarrow{P} \mathbb{E}_{\pi}[f].$$

• In that proof, Markov effectively wrote

$$\mathbb{E}[f(X_k) \mid X_{k-1}] =$$
 "predictable part" at step k ,

and then controlled the residuals.

• Thus, rather than summing i.i.d. terms, he subtracted a one-step conditional mean and showed the remainder converged.

• Markov Chain LLN (Markov, 1906): Suppose $\{X_n\}$ irreducible and aperiodic, with stationary distribution π . Then, for bounded f,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \stackrel{\mathrm{P}}{\to} \mathbb{E}_{\pi}[f].$$

• In that proof, Markov effectively wrote

$$\mathbb{E}[f(X_k) \mid X_{k-1}] =$$
 "predictable part" at step k ,

and then controlled the residuals.

- Thus, rather than summing i.i.d. terms, he subtracted a one-step conditional mean and showed the remainder converged.
- Lévy recognized this as a template for handling *any* sequence where a predictable conditional mean is known.

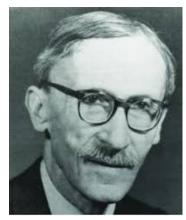
Paul Lévy



*Paul Lévy (1886–1971)

• Paul Lévy (1886–1971): Big-time probabilist.

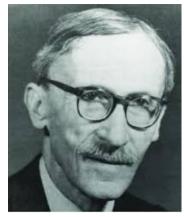
Paul Lévy



*Paul Lévy (1886–1971)

- Paul Lévy (1886–1971): Big-time probabilist.
- Contributions: Early martingales, characteristic functions, stable laws, early stochastic processes, etc.

Paul Lévy



*Paul Lévy (1886–1971)

- Paul Lévy (1886–1971): Big-time probabilist.
- Contributions: Early martingales, characteristic functions, stable laws, early stochastic processes, etc.
- Wanted a general approach to extending limit theorems to dependent sequences.

Lévy's Approach

• Suppose you have a sequence of random variables X_1, X_2, \ldots , not necessarily identical.

Lévy's Approach

- Suppose you have a sequence of random variables $X_1, X_2, ...,$ not necessarily identical.
- At step k, you know everything that happened in the past: X_1, \ldots, X_{k-1} .

Lévy's Approach

- Suppose you have a sequence of random variables $X_1, X_2, ...,$ not necessarily identical.
- At step k, you know everything that happened in the past: X_1, \ldots, X_{k-1} .
- You can form a prediction $m_k = \mathbb{E}[X_k \mid X_1, \dots, X_{k-1}].$

- Suppose you have a sequence of random variables $X_1, X_2, ...,$ not necessarily identical.
- At step k, you know everything that happened in the past: X_1, \ldots, X_{k-1} .
- You can form a prediction $m_k = \mathbb{E}[X_k \mid X_1, \dots, X_{k-1}].$
- Lévy subtracted this prediction from X_k , then considered the leftover:

$$X_k - m_k$$
.

• Lévy then set up the "compensated sum" by summing up the "leftovers",

$$M_n = \sum_{k=1}^n (X_k - m_k).$$

so each increment is

$$M_k - M_{k-1} = X_k - m_k.$$

• Theorem (Lévy, 1934). If

$$\sup_{n} \mathbb{E}[|M_n|] < \infty,$$

then M_n converges almost surely to a finite limit M_{∞} .

• Theorem (Lévy, 1934). If

$$\sup_{n} \mathbb{E}[|M_n|] < \infty,$$

then M_n converges almost surely to a finite limit M_{∞} .

Very roughly,

• When $m_k = \mathbb{E}[X_k]$, this recovers the classical LLN.

• Theorem (Lévy, 1934). If

$$\sup_{n} \mathbb{E}[|M_n|] < \infty,$$

then M_n converges almost surely to a finite limit M_{∞} .

Very roughly,

- When $m_k = \mathbb{E}[X_k]$, this recovers the classical LLN.
- When $m_k = \mathbb{E}[X_k \mid X_{k-1}]$, this recovers Markov's LLN.

• Theorem (Lévy, 1934). If

$$\sup_{n} \mathbb{E}[|M_n|] < \infty,$$

then M_n converges almost surely to a finite limit M_{∞} .

Very roughly,

- When $m_k = \mathbb{E}[X_k]$, this recovers the classical LLN.
- When $m_k = \mathbb{E}[X_k \mid X_{k-1}]$, this recovers Markov's LLN.
- Lévy's compensated-sum approach unified independent and Markov limit theorems for sums.

First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by construction,

$$\mathbb{E}[M_k - M_{k-1} \mid \mathcal{F}_{k-1}] = \mathbb{E}[X_k - m_k \mid \mathcal{F}_{k-1}] = 0.$$

First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by construction,

$$\mathbb{E}[M_k - M_{k-1} \mid \mathcal{F}_{k-1}] = \mathbb{E}[X_k - m_k \mid \mathcal{F}_{k-1}] = 0.$$

So $\{M_n\}$ satisfies

$$\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n,$$

First Glimpse at Martingales

Even though Lévy did not make the explicit connection, note that by construction,

$$\mathbb{E}[M_k - M_{k-1} \mid \mathcal{F}_{k-1}] = \mathbb{E}[X_k - m_k \mid \mathcal{F}_{k-1}] = 0.$$

So $\{M_n\}$ satisfies

$$\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n,$$

which is exactly the *martingale* property.

Jean Ville: Defining Martingales in Games of Chance (1939)

• Jean Ville (1910–1988) coined the term *martingale* in his 1939 thesis, inspired by Lévy's approach to getting limit theorems for dependent sums.

Jean Ville: Defining Martingales in Games of Chance (1939)

- Jean Ville (1910–1988) coined the term *martingale* in his 1939 thesis, inspired by Lévy's approach to getting limit theorems for dependent sums.
- Martingale definition (Ville): A sequence $\{M_n\}$ is a martingale if

$$\mathbb{E}\big[M_{n+1}\mid \mathcal{F}_n\big]=M_n,$$

regardless of whether M_n arises from sums, products, or more general operations.

Jean Ville: Defining Martingales in Games of Chance (1939)

- Jean Ville (1910–1988) coined the term *martingale* in his 1939 thesis, inspired by Lévy's approach to getting limit theorems for dependent sums.
- Martingale definition (Ville): A sequence $\{M_n\}$ is a martingale if

$$\mathbb{E}\big[M_{n+1}\mid \mathcal{F}_n\big]=M_n,$$

- regardless of whether M_n arises from sums, products, or more general operations.
- Ville emphasized that no special form (sum/product) is needed: any process satisfying the conditional-expectation property qualifies.

Joseph L. Doob: Martingales in a Measure-Theoretic Framework (1940s)

• Joseph L. Doob (1910–2004) systematically developed martingale theory using measure theory and filtrations (\mathcal{F}_n) .

Joseph L. Doob: Martingales in a Measure-Theoretic Framework (1940s)

• Joseph L. Doob (1910–2004) systematically developed martingale theory using measure theory and filtrations (\mathcal{F}_n) .

General definition

A sequence $\{M_n\}$ of integrable random variables is a martingale if

 M_n is \mathcal{F}_n -measurable and $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ a.s.

Joseph L. Doob: Martingales in a Measure-Theoretic Framework (1940s)

• Joseph L. Doob (1910–2004) systematically developed martingale theory using measure theory and filtrations (\mathcal{F}_n) .

General definition

A sequence $\{M_n\}$ of integrable random variables is a martingale if

$$M_n$$
 is \mathcal{F}_n -measurable and $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ a.s.

• Doob's Martingale Convergence Theorem (1940): If $\{M_n\}$ is a martingale with $\sup_n \mathbb{E}[|M_n|] < \infty$, then M_n converges almost surely.

Ville and Doob

 $^* \mbox{Jean Ville}$ (1910–1989)

*Joseph L. Doob (1910–2004)

Doob's Convergence Theorem

<u>Theorem</u>

Let M_n be a martingale with

$$\sup_{n>0} \mathbb{E}[|M_n|] < \infty.$$

Then there exists M_{∞} such that

$$M_n \xrightarrow{\text{a.s.}} M_{\infty}$$
.

Doob's Convergence Theorem

Theorem

Let M_n be a martingale with

$$\sup_{n>0} \mathbb{E}[|M_n|] < \infty.$$

Then there exists M_{∞} such that

$$M_n \xrightarrow{\text{a.s.}} M_{\infty}$$
.

• Proof strategy: bound the number of significant oscillations (upcrossings) to check convergence.

Doob's Convergence Theorem

Theorem

Let M_n be a martingale with

$$\sup_{n\geq 0}\mathbb{E}[|M_n|]<\infty.$$

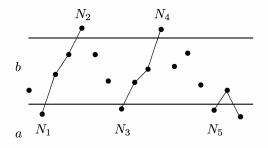
Then there exists M_{∞} such that

$$M_n \xrightarrow{\text{a.s.}} M_{\infty}$$
.

- Proof strategy: bound the number of significant oscillations (upcrossings) to check convergence.
- **Key idea:** Martingales can "buy low, sell high" only finitely many times.

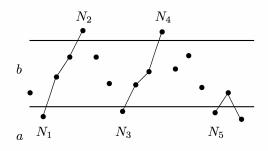
• Fix two levels a < b. An *upcrossing* is one complete swing from at or below a up to at or above b.

- Fix two levels a < b. An *upcrossing* is one complete swing from at or below a up to at or above b.
- Let $U_n(a,b)$ denote the number of upcrossings by time n.



• Intuitively, we "buy" the stock if the price falls below a, then "sell" once the price reaches above b.

- Intuitively, we "buy" the stock if the price falls below a, then "sell" once the price reaches above b.
- Number of upcrossings is how many times we "buy low, sell high".



Doob's Upcrossing Lemma

Lemma

Let (M_n) be a martingale. For any a < b,

$$(b-a) \mathbb{E}[U_n(a,b)] \le \mathbb{E}[(M_n-a)^-] - \mathbb{E}[(M_0-a)^-].$$

Doob's Upcrossing Lemma

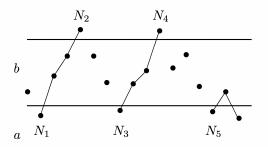
Lemma

Let (M_n) be a martingale. For any a < b,

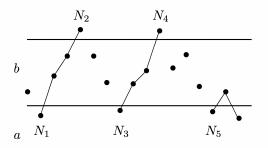
$$(b-a) \mathbb{E}[U_n(a,b)] \le \mathbb{E}[(M_n-a)^-] - \mathbb{E}[(M_0-a)^-].$$

• Key takeaway: Since $\sup_{n\geq 0} \mathbb{E}[|M_n|] < \infty$ by assumption, RHS is finite, so the expected number of upcrossings is finite.

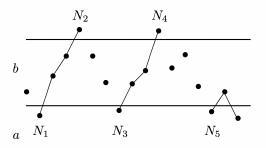
• For any a < b, we showed $\mathbb{E}[U_{\infty}(a,b)] < \infty$.



- For any a < b, we showed $\mathbb{E}[U_{\infty}(a,b)] < \infty$.
- This implies $U_{\infty}(a,b) < \infty$ a.s.



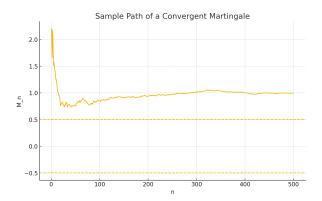
- For any a < b, we showed $\mathbb{E}[U_{\infty}(a,b)] < \infty$.
- This implies $U_{\infty}(a,b) < \infty$ a.s.
- So M_n can only cross between **any** a < b finitely often a.s.



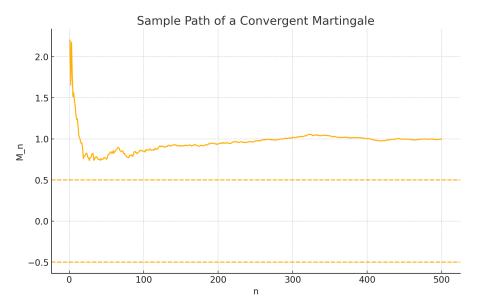
• That is, eventually M_n stays within some interval.



- That is, eventually M_n stays within some interval.
- Since M_n stays within an arbitrarily small interval after some time, every sample path converges, i.e., M_n converges a.s. to some M_{∞} .



Visual of Martingale a.s. Convergence



Key Ideas Summarized

• Upcrossings count significant oscillations.

Key Ideas Summarized

- Upcrossings count significant oscillations.
- Upcrossing lemma bounds the expected count of these oscillations using boundedness of the martingale.

Key Ideas Summarized

- Upcrossings count significant oscillations.
- Upcrossing lemma bounds the expected count of these oscillations using boundedness of the martingale.
- Almost-sure convergence follows by ruling out infinite oscillations between any two levels.

Martingale Convergence Theorem Revisited

Theorem

Let M_n be a martingale with

$$\sup_{n\geq 0}\mathbb{E}[|M_n|]<\infty.$$

Then there exists M_{∞} such that

$$M_n \xrightarrow{\text{a.s.}} M_{\infty}$$
.

Acknowledgements

First and foremost, we want to thank Nila and Leon for being amazing mentors. We learned so much from you guys the past two quarters and had a lot of fun along the way. We also want to thank Ethan for organizing the DRP and making this possible.

References

- R. Durrett. *Probability: Theory and Examples*, 4th ed., Cambridge University Press, Cambridge, 2010.
- L. Mazliak and G. Shafer, eds. The Splendors and Miseries of Martingales: Their History from the Casino to Mathematics.

 Trends in the History of Science series, Springer, 2022.
- **E.** Seneta. "Statistical Regularity and Free Will: L.A.J. Quetelet and P.A. Nekrasov." *Internat. Statist. Rev.* 71(2):319–334, August 2003.
- E. Seneta. "Markov and the Birth of Chain Dependence Theory." *Internat. Statist. Rev.* 64(3):255–263, December 1996.
- D. Williams. *Probability with Martingales*, Cambridge University Press, Cambridge, 1991.

Thank you!