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The Basic of Multilayer Perceptrons

A Multilayer Perceptron (MLP) is a basic neural network that consists of stacked layers of linear

transformations followed by non-linear activation functions.
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Forward Propagation:

Pass the input through the model to get predictions
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output = activation(Wx + b)

Update the weights and Zero gradients:

Use optimizer updates the weights and biases
using the gradients, which must be zeroed
afterward to prevent accumulation in the next

e eimizer. step()

optimizer.zero_grad()

Loss Function:
Compare the predicted values y _hat with the

true labels y

loss = loss_function(y_hat, vy)

Backward Propagation:
Compute the gradients of the loss with respect
to each parameter using the chain rule.

loss.backward()
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Numerical Stability And Initialization

where gradients become too small for learning to happen > Vanishing Gradients

where gradients blow up and make training unstable > Problem!

Exploding Gradients

Problem!

Xavier Initialization



Numerical Stability And Initialization

Xavier Initialization
to control the variance of weights such that the activations stay in a healthy range across layers.
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How to fix the overfitting problem?

Dropout

A regularization method that randomly “drops out” a subset of neurons during training.

Let:
« X € R™: input vector
« p € [0, 1]: dropout rate (probability of dropping a neuron) Before dropout After dropout

« m € {0,1}": dropout mask where
m; ~ Bernoulli(1 — p)

Then the output after applying dropout is:

~ moeX
X =
l1—p
Where:
 ®: element-wise multiplication Fig. 5.6.7 MLP before and after dropout.
o 1. scaling factor to maintain the expected value

N ¢




Project Overview:
Goal: predict house prices using the Kaggle House Prices dataset, and explore how model complexity
impacts performance.
Dataset: 2006—2010 home sales data, includes 79 explanatory variables.
Method:
 K-Fold Cross-Validation (n=5)
* Relu, L2 regularization and dropout
Implemented and compared Model:
* Linear Regression(baseline)
e MLP

* MLP with ReLU, Dropout and L2



PREDICTING HOUSE PRICES-RESULT \

linear regression model MLP MLP with RelLU, Dropout and L2
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* Linear Regression achieved the lowest validation MSE

.  More complex models (NN with Dropout & L2) did not outperform the linear model
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