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Estimating Housing Value

- Goal: Predict Median Home Value using 13 predictor variables 
and 506 observations

- Linear Regression? Polynomial Regression?
- What happens when these variables have very complex 

relationships?
- What about using Reproducing Kernel Hilbert Spaces?
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Motivation 

- How do we estimate an unknown function from data?
- We’ll want a function that balances flexibility and smoothness

What is a Reproducing Kernel Hilbert Space? 
- The idea behind an RKHS is to use a space of functions defined by a 

kernel, so that evaluation and fitting reduce to weighted sums of 
kernel functions.
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Kernels

- Every kernel takes the form of a function K(x, x’)
- A symmetric positive‐semidefinite kernel K is defined by the inner product of two 

feature‐map vectors:

where each ϕ(x) is a vector (in other words, a list of numbers). The ‘kernel trick’ 
means we compute this inner product K directly, without ever forming ϕ(x)

- When using our kernel to estimate a function, the solution always takes the form of 

where the α coefficients are chosen to fit the data 
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Kernel Ridge Regression 
- We want a function that fits the data well

- But we also want to keep the function smooth and cautious of bias
- Kernel Ridge Regression does this by combining two goals:

- Fit the observed data closely
- Keep the function smooth and avoidant to overfitting using a penalty

- We choose our weights by solving a linear system involving our kernel matrix and a 
tuning parameter:
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Simulations Introduction
- Goal: Evaluate how different kernels in Kernel Ridge Regression recover 

known functions under controlled conditions.

- We pick some function and generate noisy observations
- Our x value is randomly generated from a uniform distribution
- Our y values is generated using f(x) with a normally distributed random error

- We then apply four different kernels: Linear, Polynomial, Gaussian, and 
Sobolev to the simulated observations with different sample size

- For each model and sample size, we’ll use a 5-fold cross validation to choose 
a penalty value

- We use the mean squared error on left out data (via 5-fold cross validation) as 
our metric for how well our estimated function fits the true function
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Simulations

Best to worst:
1. Polynomial Model (2nd Order)
2. Gaussian Model (Bandwith ⋍ 0.3)
3. Sobolev Model
4. Linear Model
 

Seed: 1, e ᯈ N(0, 0.2^2), *Bandwidth helps adjust the smoothness of the function 7



Simulations

Best to worst:
1. Gaussian Model (Bandwith ⋍ 3)
2. Sobolev Model
3. Polynomial Model (2nd Order)
4. Linear Model

 

Seed: 1, e ᯈ N(0, 0.3^2)
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Application Recap

- Goal: Predict median home value (in $1000s) from 13 features (crime rate, # 
of rooms, property-tax, accessibility to highways, etc..) from 506 observations

- Method: Kernel Ridge Regression using five different kernel functions
- Linear, Polynomial, Gaussian, Sobolev, and Cosine
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Application (Cont.)
- Using all 13 predictors
- Median distance between x-values was used 

for bandwidth (gaussian)
- Also considered using linear and polynomial 

ridge regression to compare to linear and 
polynomial kernels

 Results:
- Linear kernel performed about the same as 

their linear RR counterpart.
- Polynomial Kernel performed better than their 

polynomial RR counterpart
- Gaussian Model is the best for predicting 

median home value for this data
(RMSE = approx. $3770)

Model Avg. MSE from 
5-fold CV

Linear KRR 24.52

Linear Ridge Regression 24.14

Polynomial KRR (p = 2) ** 16.57

Quadratic Ridge Regression 19.04

Gaussian KRR * 14.25

Sobolev KRR *** 18.38

Cosine KRR 33.80
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Packages Used
- ggplot2 (for plots)
- MASS (for bostonhousing dataset)
- glmnet (for linear and polynomial ridge regression models)
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