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Estimating Housing Value

- Goal: Predict Median Home Value using 13 predictor variables
and 506 observations

- Linear Regression? Polynomial Regression?

- What happens when these variables have very complex
relationships?

- What about using Reproducing Kernel Hilbert Spaces?



Motivation

- How do we estimate an unknown function from data?
- WEeé’'ll want a function that balances flexibility and smoothness

What is a Reproducing Kernel Hilbert Space?

- The idea behind an RKHS is to use a space of functions defined by a
kernel, so that evaluation and fitting reduce to weighted sums of
kernel functions.



Kernels

- Every kernel takes the form of a function K(x, x’)
- A symmetric positive -semidefinite kernel K is defined by the inner product of two
feature-map vectors:

K(z,z') = (¢(z), ¢(2')),

where each ¢(x) is a vector (in other words, a list of numbers). The ‘kernel trick’
means we compute this inner product K directly, without ever forming ¢(x)

- When using our kernel to estimate a function, the solution always takes the form of

Z a;K(x;j, x) = f(x).

where the a coefficients are =1



Kernel Ridge Regression

We want a function that fits the data well

min - Z (i = fx))”
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- But we also want to keep the function smooth and cautious of bias
- Kernel Ridge Regression does this by combining two goals:
- Fit the observed data closely
- Keep the function smooth and avoidant to overfitting using a penalty
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f= argmin{ Z(v, FO + LA

- We choose our weights by solving a linear system involving our kernel matrix and a
tuning parameter:
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Simulations Introduction

- Goal: Evaluate how different kernels in Kernel Ridge Regression recover
known functions under controlled conditions.

- We pick some function and generate noisy observations
- Our x value is randomly generated from a uniform distribution
- Oury values is generated using f(x) with a normally distributed random error

- We then apply four different kernels: Linear, Polynomial, Gaussian, and
Sobolev to the simulated observations with different sample size

- For each model and sample size, we’ll use a 5-fold cross validation to choose
a penalty value

- We use the mean squared error on left out data (via 5-fold cross validation) as
our metric for how well our estimated function fits the true function



S u I t- Linear Kernel (n = 50) Polynomial Kernel (p = 2, n = 50)
u S 0.5 - : ; 3 0.5

f(x) =3x% - %x [—0.5,0.5]

Best to worst:

1. Polynomial Model (2nd Order)

2. Gaussian Model (Bandwith = 0.3)

3. Sobolev Model
4. Linear Model

0.025

w
%) kernel
= 0015
3 gaussial
]
L linear
[}
2 polynomial |
'ig 0.010 obol
<
0.005
. . . 0.000
Seed: 1, e [1 N(0, 0.2"2), *Bandwidth helps adjust the smoothness of the function 20 50 100 200 300 7

Training Sample Size



Gaussian Kernel (n = 50) Polynomial Kemel (p = 2, n = 50)

Simulations
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Application Recap

- Goal: Predict median home value (in $1000s) from 13 features (crime rate, #

of rooms, property-tax, accessibility to highways, etc..) from 506 observations

- Method: Kernel Ridge Regression using five different kernel functions
- Linear, Polynomial, Gaussian, Sobolev, and Cosine

. 1-D Gaussian Kernel Ridge Regression on Istat
1-D Linear KRR on Istat 1-D Polynomial (degree 2) KRR on Istat
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Appllcatlon (Cont.)

Using all 13 predictors

Median distance between x-values was used
for bandwidth (gaussian)

Also considered using linear and polynomial
ridge regression to compare to linear and
polynomial kernels

Results:

Linear kernel performed about the same as
their linear RR counterpart.

Polynomial Kernel performed better than their
polynomial RR counterpart

Gaussian Model is the best for predicting
median home value for this data

(RMSE = approx. $3770)

Model

Avg. MSE from
5-fold CV

Linear KRR

24,52

Linear Ridge Regression

24.14

Polynomial KRR (p = 2) **

16.57

Quadratic Ridge Regression

19.04

Gaussian KRR *

14.25

Sobolev KRR ***

18.38

Cosine KRR

33.80
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Packages Used

- ggplot2 (for plots)
-  MASS (for bostonhousing dataset)

- glmnet (for linear and polynomial ridge regression models)

Also, thank you Antonio!
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