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1. What is Time Series?

- Data recorded over successive time intervals
- Noti.i.d

Figure 1: Johnson & Johnson quarterly earnings per share (from SS).
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02. Characteristic of Time Series

Mean Variance
Definition: Definition:
Given a sequence z; where t =1, 2, 3. Given a sequence z; where t =1, 2, 3.
pe = E(x) Utz = Var(z;) = E[(z; — Mt)z]
Example: O

White noise: a collection of points that are uncorrelated
and identically distributed. It has mean of 0 and variance of
0”2 (constant).



Auto-Covariance
Definition:

Given a sequence x; where t = 1, 2, 3.
Yz(8,t) = Cov(zs, )

Note: v,(s,t) =0

2
xt

Why is this useful?

Measures linear dependence between variates
along the series.

Used in Model Building (AR, MA, ARIMA)
Precursor to Auto-correlation

(Auto-correlation is the normalized version of
auto-covariance which lies between -1and 1;
often easier to interpret).

O

Cross-Covariance

Definition:

Given a sequence x; and y; where t =1, 2, 3.
’Ya:y(sa t) — COV(:ES, yt)

i ?
What is the purpose* ¢

Detects Interdependence

Used in Multivariate Time Series Models
Precursor to Cross-correlation
(cross-correlation is the normalized version of
cross-covariance).

Auto-covariance: within one series >
looks at internal memory.

Cross-covariance: between two series >

looks at how they relate across time.



Stationarity Definition 4\

- ~ Important property that determines whether a time series behave consistently
over time.
This is useful because:

e Model Assumptions

e Stationary process is more predictable

e Simplified Analysis

Strong Stationarity

& TR OO T 2 (Tt14+0)Tta+8y-- 1Tt +e), forallk>1,allty,... 1, and all £

Any collection of variates along the series has the same joint distribution
jb/\ g‘ after we shift the time indices forward or backward.
= Note: rare useful in practice.

Weak Stationarity
pzt =p, forallt
Strong - Weak Ye(5,t) = va(s + £, +£), for all 5,t,¢

Weak 4 Strong (general)

Weak = Strong (Gaussian) Mean and Variance are constant.

Auto-covariance depends only on lag.
Note: common in modeling (ARIMA)



3. Decomposing Time Series

Time series model:

Signal Noise

T, = 0y + wy

T

Ut + St

Trend Seasonal



3. Decomposing Time Series Example
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04. Seasonality

Random
movement

Time

Definition: reqular, repeating patterns or
cycles in time series that occur at fixed
intervals due to seasonality factors (time of
year, month, week, day, etc)

Seasonality vs Trend:

Trend: long-term upward/downward movement
Seasonality: short-term, cyclic, periodic
variation

How to detect Seasonality?
Fourier Decomposition
Discrete Fourier Transform
Seasonal-Trend Decomposition




Detecting Seasonality Methods

1. Fourier Decomposition (Continuous)
e Why is this useful?

e A method for breaking down a complex time series - Uncover hidden cycles by
into a sum of simple sine and cosine waves with expressing the series in terms of
different frequencies, amplitudes, and phases. its frequency components.

e  Definition: ) )
- Turns complicated repeating

ctj =cos(2mj/m-t), t=1,...,n patterns into a mix of simple
_ . wave shapes (smooth
Stj = sm(27r]/n . t), b= 1.0, up-and-down curves)
4 - Helps us build tools to remove
Ty = ag + Z(ajctj + bjStj), t=1,...,n noise, focus on important parts,

J=1 or study signals more easily

Note: setp = (n -1)/2

In theory, FD is very slow: takes about O(n"2)
for n points.

A faster method: “Fast Fourier Transform” : O(n
log n)
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2. Discrete Fourier Transform (DFT)

e A method used to convert a discrete time
series (a list of numbers) into a set of
frequencies that represent it.

e Definition:

For a discrete time series g, x1, ..., Zy—1, the DFT is defined as:
N-1
_omikn
Xe=Y zpoe o0y K= usN—1
n=0

» X}: complex-valued DFT coefficient at frequency k
e IN: number of time samples

« The inverse DFT reconstructs the time series from the frequency domain

Why is this useful?

Converts a time series into the
frequency domain, showing
how much of each frequency is
present.

To detect cycles, analyze
seasonality and filter out noise

Can also be computed using
Fast Fourier Transform.
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3. Seasonal-Trend (ST) Decomposition

e A statistical method to detect the presence of seasonality in
time series by separating into 3 components:
Time Series = Trend + Seasonality + Noise

e Why is this useful?
e Types of Decomposition:

- Additive: Use when seasonal variation is roughly constant - Understanding patterns
over time.

ye =T + St + e

- Improve forecasting

- Improve interpretability

- Multiplicative: Use when seasonal variation changes with
trend level (e.g., growing sales with bigger seasonal
peaks).

yr = T; X Sy X e
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Example of ST Decomposition

—— Original time series

0 2000 4000 6000 8000 10000

- Trend of time series

2000 4000 6000 8000

—— Seasonality of time series

0 2000 4000 6000 8000 10000
1e-14-1.8750016667e—2

—— Decomposition residuals of time series

2000 4000 6000 8000




04. Smoothers

- Eliminates noise and irregularities to reveal underlying
trend and patterns in the data
- Linear Filters:

k
97;2 E AiYi—j, ’I:=1,...,’I’L
j=—k

- Penalized Least Squares:

n

1 O o 2
min iﬂ(yz 0:;)” + AP(0)



04. Smoothers: Linear Filters

Moving Average: calculates a series of averages from a specified
number of consecutive data points in a time series

Kernel Smoothing: creates smoother-looking estimates by using a
smoother weight sequence (larger k)

Moving average Kernel smoother
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04. Smoothers: Penalized Least Squares

Hodrick-Prescott Filter: decompose a time series into a smooth
trend component and a cyclical component

Trend Filter: smooths out short-term fluctuations, noise, and
seasonal variations

Hodrick-Prescott filter Trend filter
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Thanks!

Any Questions?


https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

