Nonlinear Regression & Application to Leukemia Incidence Data

Alejandro Gonzalez

Advisor: Michael Pearce

UNIVERSITY of WASHINGTON

What is Nonlinear Regression?

• Linear Regression:

- Fits a "straight line" model between response variable and covariate(s).
- Picks the line with smallest sum of squared residuals

• Nonlinear Regression:

- Can break the assumptions of LR
- Can fit models that aren't straight lines
- Very flexible

Leukemia Incidence Rates

Investigating Female Incidence Rates

- On Year, Age, & Ethnicity
- 1975-2017 0
- **Exploratory Data Analysis**
 - **Emphasis on model comparisons** 0
 - Leukemia incidence changes over time in females 0

UW Undergraduate Symposium

NATIONAL CANCER INSTITUTE Surveillance, Epidemiology, and End Results Program

What Type of Model Would You Use for this Data?

Y of WASHINGTON

Polynomial Regression

• Extension of Linear Regression

- Quadratics, Cubics, Quartics...
- Accounts for changes in relationship
- ANOVA: Quadratic best

• Use:

- Polynomial Growth
- **Population Dynamics**
- Bounded Functions

The Family of Splines

- General Concept
 - 1. Divide covariates into sections
 - 2. Fit separate model in each section
 - 3. Optional: Add constraints
- Key Ideas:
 - a. Knots
 - The place where we divide
 - More knots = more flexibility
 - Statistician vs. computer
 - b. Constraints
 - Different constraints lead to different model types

UNIVERSITY of WASHINGTON

Examples of Spline Models

- Natural Spline
 - Constraints straight lines at the end
 - More predictable
- Smoothing Spline (My Favorite)
 - Stable, Gradual, and Sturdy
 - Punishes fast increases & "roughness"
- M.A.R.S Spline
 - Picks the knots points for you
 - Only straight lines

Cross Comparisons

Year

of WASHINGTON

Cross Comparisons

of WASHINGTON

Context Knowledge

• Does much make sense?

• Statistical Tests

• ANOVA, AIC, BIC, Residual Plots

• Cross Validation

• LOOCV, GCV, Forward Selection

UNIVERSITY of WASHINGTON

