Predicting Strikeout Percentage Among MLB Relief Pitchers

By: Luke VanHouten

Mentored by: Alex Bank

DRP Outline

- Motivation
- I am very interested in baseball statistics
- I want to work with prediction
- There is more complexity and nuance with pitching statistics
- I would like to work with a complex dataset
- Pitching provides this

Baseball Context

- Pitcher
- The pitcher's role is to throw the baseball to home plate, hopefully without the batter being able to hit the ball
- They aim for the strike zone, an imaginary box by the batter's torso
- Strikes and strikeouts
- If a batter does not hit a ball that goes through this zone, it is a strike
- 3 strikes and you're out
- Strikeout percentage is a stat that lets us standardize strikeouts to not take into account how much a player has played

What I Learned - Reading

- "Predicting Major League Baseball Strikeout Rates from Differences in Velocity and Movement Among Player Pitch Types" - Eric Martin
- MIT Sloan Sports Analytics Conference 2019
- Want to predict strikeout percentage based on pitch data among different pitch types for starting pitchers
- Pitch data includes pitch speed and movement, to be aggregated
- Cluster pitches based on pitch data rather than name of pitch
- Some players may throw different pitches that still look the same to the batter

What I Learned - Reading

- Clustering uses Gaussian mixture models
- Identifying probabilistic regions to separate pitches into different categories
- As opposed to k-means clustering, where these clusters are set beforehand
- Pitches now have a lot of variability within each pitch type that can be captured with a distribution
- Max velocity, strike percentage, and vertical movement IQR best predictors of strikeout percentage among these clusters

Scope of My Project

- Use techniques found in the paper to predict strikeout percentage at the pitcher level, as opposed to per pitch type
- Instead, have clustering be just an extension of the prediction model
- Focus on relief pitchers
- Future question brought up in original paper
- Include stats for handedness matchups and game leverage
- More important for relief pitchers as managers choose when they enter the game

Data Sources - Statcast

- Statcast pitch data - 2015-2021
- Ignoring 2020 season due to effects of COVID
- Allows for 2021 to be easily split to test data
- 4.4 million pitches for these 6 years
- Scrape from Baseball Savant to PostgreSQL server using R
- Learned some SQL to more efficiently the group pitchers through queries
- Still have all pitch data available

Data Sources - Other

- FanGraphs
- Leverage Index
- Access using baseballr API
- Chadwick Bureau
- Player ID's to join above datasets
- 16 CSV files
- Merge all of these to create one dataframe, aggregated per pitcher per year

Data Sources - Statistics to Add

- Strikeout Percentage
- Strike Percentage
- Percentage of pitches that are not balls
- First Batter Platoon Advantage
- The percentage of batters faced that are the first for that pitcher's appearance and have the same handedness as the pitcher
- Pitchers have more favorable matchups when this the case

Data Sources - Statistics to Add

- Pitches, Games, Pitches per Game
- Relief pitcher eligible if <1000 pitches, >3 games, <45 pitches per game
- Leverage Indexes
- The amount the win probability can change per event in the game
- pLl
- The average leverage index for all events during an appearance
- gmLI
- The average leverage index when the reliever enters the game

Data Sources - Statistics to Add

- Number of Clusters
- Implemented the Gaussian mixture models for all pitches per player per year for number of clusters
- Only clustered by pitch speed and movement to improve computation speed
- Relievers on average had one less pitch cluster than starting pitchers

Comparison of Clusters between Starters and Relievers

Model - Setup

- XGBoost used for predictive machine learning model
- Simple and powerful
- All data split into training and testing data
- Training data 2015-2019
- 1670 pitchers
- Testing data 2021
- 388 pitchers
- $\quad 20 \%$ train test split

Model - Setup

- Hyperparameter tuning - targeting MAE
- Example hyperparameter: ETA
- Controls the learning rate of the model
- Want to find the the combination of these hyperparameters that give the lowest MAE
- Used a grid search for this

Model - Results

- Final MAE ~ 0.046, or 4.6%
- MAE in original paper 0.0294 (2.94\%), so off by a factor of ~ 1.5
- Less data and different method likely accounts for more error

Arranged Absolute Error For Test Pitchers

Model - Results

- Feature Importance

1. Strike percentage
2. Average leverage index for all game events
3. Max velocity
4. Velocity IQR
5. Average leverage index at the beginning of the inning

Future

- Dealing with outliers in pitch clustering
- Doing the prediction within each cluster
- Similar to the original paper
- Pitch sequencing
- Different permutations of sequences of the pitch clusters

Thank you!

