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1 Part 1:

A random walk depicts seemingly random movement from one point in space
to any other location. We started by talking about simple symmetric random
walks, in which you start at position x = 0 and there is a equal probability
moving up or down one position. A graph of a 1D simple symmetric walk looks
something akin to this:

In this example, the probability of moving one unit down is equal to the
probability of moving one unit up [P(down) = P(up) = 1

2 ]. We further discussed

the low probabilities of moving all the way up solely [P(up only) = 1
2

n
] or moving

all the way down solely [P(down only) = 1
2

n
]. We also discussed all of the many

ways to start at x = 0 and end back up at x = 0, using combinations.

2 Part 2:

We then continued on by learning about random walks visually and through
basic matrices.

In the example, we have a random graph with five nodes upon which a
random walk can be performed. In order to create the transition matrix M that
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shows the probability of going from node i to node j with every direction having
equal probability, we abide by the following formula:

Mij =

{
1

deg(vj)
if (vi, vj) is an edge in the graph G

0 otherwise

This creates the following matrix:

M =


0 1
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4
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3
0 0 1

2
1
2 0


This matrix shows all of the probabilities of moving from one node to the

next node. For example, the probability of performing one random step from
node 5 to node 4 is M(5, 4) = 1

2 .

Furthermore, if we want to find the probability of starting in a certain node,
performing multiple random steps, and ending up in another certain node, all
we have to do is raise the M matrix to the power of number of random steps
performed. For example, if we wanted to know all of the probabilities after three
random steps, we just raise the matrix M to the third power:

M3 =
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So, the probability of starting at node 5 and ending up at node 1 after three

random steps is M3(5, 1) = 5
36 .
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This leads us into our main focus of random walks, which is convergence. Con-
vergence is attained when the probability of ending up at node j is the same
regardless of what node i you started at. After running this example through
some R code that I coded up for convergence, we get that after 9 random steps,
the transition matrix M converges to:

M9 =


0.1428571 0.2142857 0.2857143 0.2142857 0.1428571
0.1428571 0.2142857 0.2857143 0.2142857 0.1428571
0.1428571 0.2142857 0.2857143 0.2142857 0.1428571
0.1428571 0.2142857 0.2857143 0.2142857 0.1428571
0.1428571 0.2142857 0.2857143 0.2142857 0.1428571


This goes to show how regardless of what node you start in, the probability

of converging to the first node is 0.1428571.

3 Part 3:

We then got more technical with the matrix M and breaking it down into simpler
components. The matrix M can be broken down into the product of the matrices
D−1 and W, in which D−1 is the inverse of the matrix D that is the diagonal
matrix where Dii = deg(i) and W is the matrix of weights under the assumption
that not every direction is equally probable. Assuming every direction is no
longer equally probable, the elements of the matrix M are now:

Mij =
wij

deg(i) ,

where deg(i) =
∑

j wij now. We then defined a probability cloud, which is
conceptually the idea of starting at node i and all of the possible probabilities
for each node after t random walks:

i → Mt[i,:],

This row vector is each individual probability starting at node i and then
ending at another certain node after t random walks.

Next, we moved on to rephrasing the M matrix as the symmetric matrix S:

M = D− 1
2 SD

1
2 = D− 1

2VΛVTD
1
2 = (D− 1

2V)Λ(D
1
2V)T = ΦΛΨT ,

where Φ = D− 1
2V, Λ is a diagonal matrix with the eigenvalues, and Ψ =

D
1
2V. Φ essentially is the product of the diagonal matrix of deg(i) D to the

− 1
2 power and the eigenvector matrix V. Also, Ψ is the product of the diagonal

matrix of deg(i) D to the 1
2 power and the eigenvector matrix V. Φ and Ψ form a

biorthogonal system in that ΦΨT = Inxn and are the right and left eigenvectors
of M, respectively. In addition:

M =
∑n

k=1 λkφkψ
T
k
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Moving forward, the power rule now works like:

Mt =
∑n

k=1 λ
t
kφkψ

T
k

which is much simpler than raising the whole matrix to a power t for the
number of random walks t. In addition, the probability cloud now expands to:

Mt[i,:] =


λt1φ1(i)
λt2φ2(i)
...

λtnφn(i)


We then looked through a proposition proving that the first element of the

above matrix is redundant since it is a multiple of 1.

We then looked at a side note about disconnected and bipartite graphs, which
refers to graphs being in two separate, distinct groups. In order to solve this
issue, we make the walk lazy, such that there is a 50% chance to move from the
node or a 50% chance to stay at the same node:

M
′
= 1

2M + 1
2 I

Using the new breakdown of the matrix M, we now get two new diffusion
maps:

Diffusion Map:

φt(vi) =


λt2φ2(i)
λt3φ3(i)
...

λtnφn(i)


4 Part 4:

The lazy walk matrix can be denoted as follows:

WG = ( 12 )(I + MGD
−1
G ).

In addition, the Laplacian matrix can be defined as:

L = D - A,

where D is the diagonal degree matrix and A is the adjacency matrix where
A(i, j) represents node i being adjacent to node j, and the rest of the adjacency
matrix being zero.
This matrix can be normalized so that:

N = D− 1
2LD− 1

2 = I - D− 1
2MD− 1

2 .

Doing some matrix algebra, we get that:
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W = ( 12 )(I + MGD
−1
G )

W = 1
2 I +

1
2MGD

−1
G

W = I - 1
2 I +

1
2MGD

−1
G

W = I - 1
2D

1
2 (I - DG

− 1
2MGDG

− 1
2 )DG

− 1
2

W = I - 1
2 (DG

1
2 IDG

− 1
2 - DG

1
2DG

− 1
2MGDG

− 1
2DG

− 1
2 )

W = I - 1
2 (I - MGDG

−1)

This new rewriting of the lazy walk matrix is done in order to make it
symmetric as well as have nicer values through its normalization. This new walk
matrix has eigenvectors of D

1
2 times the eigenvectors of N & the eigenvalues of

1 - (eigenvalues of N)/2.
We then, through more linear algebra, arrive at a stable distribution starting
with the π vector:

π = d/(1Td)

Using linear algebra, we can show that this π vector is, in fact, a right
eigenvector of our lazy walk matrix W with eigenvalue 1:

MD−1π = MD−1d/(1Td) = M1/(1Td) = d/(1Td) = π
Wπ = (1/2)Iπ + (1/2)MD−1π = (1/2)π + (1/2)π = π

And after even more complex linear algebra, we find that the stable distri-
bution is the π vector, meaning that whatever distribution of nodes you have in
your random graph, you will eventually converge to the π vector.

D
1
2 c1ψ1 = D

1
2

1

||d
1
2 ||

d
1
2

||d
1
2 ||

= d

||d
1
2 ||2

= d∑
j d(j) = π

5 Part 5:

An additional application of random walks is dimensional reduction. After
creating a diffusion map like the one below, we can remove the first element as
it is redundant (its eigenvalue is one).

φ
(d)
t (vi) =


λt2φ2(i)
λt3φ3(i)
...

λtd+1φd+1(i)


As we take more and more random steps and the power we raise our eigen-

values to gets larger and larger, we can start to ignore the later elements of
this diffusion map as raising the smaller eigenvalues to high powers essentially
makes them zero since the eigenvalues are in descending order. This knowledge
allows us to reduce the dimensions to only the numerically essential elements.
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6 Resources:

First Random Walks Text:
https://people.math.osu.edu/husen.1/teaching/571/random walks.pdf

Second Random Walks Text:
https://people.math.ethz.ch/ abandeira/BandeiraSingerStrohmer-MDS-draft.pdf

Third Random Walks Text:
lect10-18 rwG%20(5).pdf

My Simulation Code in R:
https://github.com/NoahMcMahon1414/STAT DRP 2023/blob/main/STAT 499 DRP Simulation.R
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