Sparse Linear Model in
High Dimensions

uuuuuuuuu

Mentor: Facheng Yu



High-dimensional Data

When setting up models for real-world
scenarios, the dataset we study on are
usually with high dimensions. For
example, dataset for gene expression
analysis and web search index. These high
dimensional data allows us to form
models that have good estimation for the
real world. There are lots of examples of
high dimensional data from the real world
like gene expression.

E2175299R783
E217S299R784
E2178300R787
E2175300R786
E217S300R785
E2175299R782
E1115150R567
E2025185R548
E2025196R564
E2025188R552
E1115150R568
E2025185R545
E1995255R449
E1995255R448
E19985255R450
E2028192R557
E2025190R553
E1115150R566
E1445184R737
E2025186R548
E2025186R549
E2028186R547
E2025192R656
E2025188R550
E2025192R558
E2025185R544
E2025188R551
E2025196R563
E1445184R738
E2025196R562
E20285194R560
E2025190R554
E2025190R555
E2025194R561
E2025194R659
E1895232R190
E1895232R386

E
E
®e
E

e s
es



Data Augmentation

To let low dimensional data has better performance compared to high

dimensional data, we can do data augmentation to generate dimensions from
original dimensions.

One common technique of data augmentation is through polynomial. By only
5th polynomial. We can generate over 1000 dimensions to the data.



Motivation of sparse
linear model

Assume we want to estimate the
parameter of a linear model with least
squares estimator, and the data's
dimension d is larger than the size of the
data n, thatis, d>>n.

Next, we want to calculate solutions by
minimizing least square error and
empirical least square error.

f(z) =z"0,0 c R*
0* = argming.riE[(z?0 — y)?]

A ' 1 n
0 = argmzngeRd; ;(mgpé’ — yi)2



Motivation of sparse
linear model

By differentiating, we can get the
solutions.

Since the data's dimension is larger
than the size of the data, the first part of
the solution to the ordinary least square
estimator will not be invertible.

This can lead to either no solution, or
infinitely many solutions.

0* = argming.gE[(z10 — y)?]
0* = E[zz’] ' E[zy]

A ' 1 n
0 = a"“Qm’meeRdg ;(33?9 — yi)2

6 = (XTX) 1(xTY)



Motivation of sparse
linear model S(0%) :={j e {1,...,d}: 0} # 0}

To make ordinary least

_ , _ The hard sparsity requires L1 norm of S
square estimator's solution having

; ) is substantially smaller than d. Under the
a unique solution, we can make an

assumption about the parameter of sparsity assumption, we may
the model that indicates only some of have a unique linear solution of the least

the parameters are non-zero, which is square.
the sparsity assumption.



Lasso program

Consider a linear model with a noise
vector w.

By sparsity assumption, we want to
minimize the square error while
controlling the sparsity of the
parameters.

Using Lagrangian method, we can write
above two constraints in one
minimization problem.

min
fcRd

y = X0 +w

1
{ oy = X6l + Xa[0]1 |



RE condition

1
;uxaug > k|| A||2 for all A € C3(S)

. 3
66 < 2V,

with

Tw

X
)\n ZZHTHOO

Consistency of
Lasso program

In addition to hard sparsity assumption,
we also need to introduce RE condition.
The RE condition provides a guarantee
that these algorithms can distinguish
the truly important predictors from the
irrelevant ones, even when the data
involves many variables that are
correlated with each other.

By the two assumptions, we are
guaranteed an upper bound of the
difference between estimation and true
parameter.



Application

Since the lasso program constrains the
number of non-zero parameters, we can
use it for feature selection.

We suppose that the selected feature

behaves similarly as the original features.

E[(Y; - X, 0%)°] = E[(Y; — X, 6")7]



Real world example

housing = datasets.fetch_california_housing()
X = housing.data
y = housing.target

. . . X.shape, y.shape
One of the common application of linear , Pe, Y-=hap

model is predicting house price.

1.9s

((20640, 8), (20640,))

In this example, we will use the real-world

data of California house price to

demonstrate how lasso program can help poly = preprocessing.PolynomialFeatures(degree=5)
make prediction more accurate. X_transformed = poly.fit_transform(X)

Since we want to use lasso program to scaler = preprocessing.StandardScaler().fit(X_transformed)
seIect most efficient feature, we can apply X_transformed = scaler.transform(X_transformed)

data augmentation to generate lots of X_transformed. shape

features, and later select features among o v o

them. (20640, 1287)



Real world example

By running lasso program, there are 10
features that were selected.

We can compare the mean squared error
between the models with raw
features and selected features.

lambda_ = ©.65

model opt = Lasso(alpha=lambda_,max_iter=2000)
model opt.fit(X_lasso[n:], y _lasso[n:])
theta_opt = model_opt.coef_

support = np.where(abs(theta opt)>0)[0]
support.shape

© 3ds

(1e,)



Real world example

w

Selected features

model _new = LinearRegression()

model new.fit(X_train[:,support], v_train)
y_pred_new = model new.predict(X_test|[:,support])
mean_squared_error(y_test, y_pred_new)

0.0s

©.5674717754480938

The model with selected features has less
mean squared error comparing to the
model with original features.

W

Original features

model_init = LinearRegression()
model_init.fit(X_train[:,1:X.shape[1]], y_train)
y_pred_init = model_init.predict(X_test[:,1:X.shape[1l]])
mean_squared_error(y_test, y_pred_init)

0.0s

©.6357983840063315



Thank you




	Slide 1: Sparse Linear Model in High Dimensions
	Slide 2: High-dimensional Data
	Slide 3: Data Augmentation 
	Slide 4: Motivation of sparse linear model
	Slide 5: Motivation of sparse linear model
	Slide 6
	Slide 7: Lasso program
	Slide 8: Consistency of  Lasso program
	Slide 9: Application
	Slide 10: Real world example
	Slide 11: Real world example
	Slide 12: Real world example
	Slide 13: Thank you

