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Sparse Linear Model in High Dimensions

Linear models are fundamental tools in statistical analysis and machine learning, providing a
straightforward yet powerful way to understand relationships between variables. At their core,
linear models predict an outcome variable as a linear combination of one or more predictor vari-
ables, offering clear interpretations through the coefficients that represent the effect of each pre-
dictor. This simplicity makes linear models a go-to method for many applications, from economics
and finance to biology and engineering, where understanding the influence of variables is crucial.
Despite their basic form, linear models can be adapted and extended to handle complex and high-
dimensional data, maintaining their status as essential instruments in the analyst’s toolbox for
both explanatory and predictive tasks. Through methods like regression, these models illuminate
patterns and trends in data, guiding decision-making and providing insights into the underlying
processes that generate the data. The most general form of linear models is

F = {f : f(x) = xT θ, θ ∈ Rd} (1)

A common estimator of linear model is Least Squares Estimator which gives an estimated parameter
with the smallest mean squared error.

MSEf = E[(f(x)− y)2] (2)

f∗ = argminf∈F MSEf = argminf∈F E[(f(x)− y)2] (3)

By definition, it is easy to see that least squares estimator is also the smallest variance estimator.
In applications, since we don’t know the distribution of x and y, we instead use the empirical mean
squared error and empirical least squares estimator.
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f̂ = argminf∈F M̂SEf = argminf∈F
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We can get the least squares estimator of linear model by differentiating the empirical mean squared
error, where

θ̂ = (XTX)−1(XTY ) (6)

By looking at the result, it is natural to ask whether XTX is invertible. Unfortunately, when
dealing datasets which dimension of it is significantly larger than the size of the datasets, it is not.



This is because when the dimension of data d is significantly larger than the size of the dataset n,
XTX will have rank at most n while having size of Rd×d.

This is very common when collecting data from the real world. Because of the complexity of the
real world, the data collected are high-dimensional from its nature. When the data is hard to
collect or when subject to study is rare, few data we can collect. This became a common problem
when using naive linear models. To solve this problem, we introduce sparsity models.

The term ”sparsity” indicates that the parameters are not ”dense”, which means that the ma-
jority of parameters are zero while only few non-zero parameters contributes to the result. The
definition of sparsity can be derived from the concept of support. The support set of θ∗ is defined
as

S(θ∗) := {j ∈ {1, . . . , d} : θ∗j ̸= 0}.
The hard sparsity requires the L1 norm of S(θ∗) substantially smaller than d. Under the sparsity
assumption, we may have a unique linear solution of the least squares estimator.

To include hard sparsity in linear model, we can add an constraints on the L1 norm of the pa-
rameter.

min
θ∈Rd

{
1

2n
∥y −Xθ∥22

}
such that ∥θ∥1 ≤ R (7)

for some radius R > 0. However, optimization problems with constraints is still not easy to solve.
We can further convert this minimization problem with constraints into a minimization problem
with no constraints through Lagrangian method, which is the Lasso program.

min
θ∈Rd

{
1

2n
∥y −Xθ∥22 + λn∥θ∥1

}
. (8)

The θn is a regularization parameter to be chosen by the user. When θn is large, the lasso program
will tend to give sparser solution, while when θn is small, the program will tend to do more opti-
mization on the squared error and result in less sparse solution.

Having the lasso program, we want know how well it estimates the true parameter. To do this,
we still have to introduce another assumption, that is the Restricted Eigenvalue condition (RE
condition). Intuitively, RE condition provides a guarantee that these algorithms can distinguish
the truly important predictors from the irrelevant ones, even when the data involves many vari-
ables that are correlated with each other. Formally, the design matrix X satisfies the restricted
eigenvalue (RE) condition over S with parameters (k, α) if

1

n
∥X∆∥22 ≥ k∥∆∥22 for all ∆ ∈ Cα(S). (9)

where Cα(S) represents the restricted null space.

With sparsity assumption and RE condition, the difference between any solution θ̂ of the lasso
program with regularization parameter λn ≥ 2∥XTw

n ∥∞ and the true parameter θ∗ has an upper
bound of

∥θ̂ − θ∗∥2 ≤
3

k

√
sλn. (10)



There are lots of applications of lasso program. Since the lasso program constrains the number of
non-zero parameters, one of the common application is feature selection. A widely used procedure
of selecting effective and efficient features for models is through data augmentation and lasso
program. There are techniques like polynomial data augmentation and other pre-processing tools
that can generate over thousands of features, and lasso program are used to select few features that
are actually contributing to the final prediction. By using selected features over original features,
models usually performs better with higher accuracy of prediction.


