drp winter 25

bao han ngo

e-values in hypothesis testing

what is an p-value?

- a random variable P with $P(P \le \alpha) \le \alpha$ under the null
- a smaller p-value represents more evidence against the null
- disadvantages of p-values
 - pre-specify α
 - pre-specify sample size
 - difficult to combine dependent p-values from different experiments
 - need to know data collection procedure

what is an e-value?

- a random variable E with an expected value of at most 1 under the null, $E_{H_0}[E] \le 1$
- a larger e-value represents more evidence against the null
- 1/e is a valid p-value
- advantages of e-values
 - can specify α after the fact
 - can peek at the data/stop early
 - a pasily combine a values from different experiments
 - can easily combine e-values from different experiments
 - can be used even when data collection procedure is unknown

Employment status [reference: unemployed]		
Employed	-0.569	1.442
Not in the labor force	-0.344	-0.012
Education level [reference: no high school]		
High school graduate	0.129	-0.012
Some college	1.217**	1.442
College graduate	2.270**	2.391

Note: All models adjust for survey weight. Coefficients for age reflect a 10 year change. * p < 0.05. ** p < 0.01.

likelihood ratio as an e-value

- $H_0: \theta = \theta_0$
- $H_1: \theta = \theta_1$
- likelihood ratio: $\Lambda = \frac{L(\theta_0|x)}{L(\theta_1|x)}$
- inverse of likelihood ratio: $\frac{1}{\Lambda} = \frac{L(\theta_1|x)}{L(\theta_0|x)}$ has an expected value of $1 \rightarrow \frac{1}{\Lambda}$ is an e-value

simulating p- and e-value validity

- t samples from Bernoulli(p = 0.5)
- want to test (and maybe reject) the null hypothesis $H_0: p = 0.5$ using t samples

p-value

- $H_0: p = 0.5$
- $H_1: p > 0.5$
- p based on binomial tail probability
- reject if p < 0.05

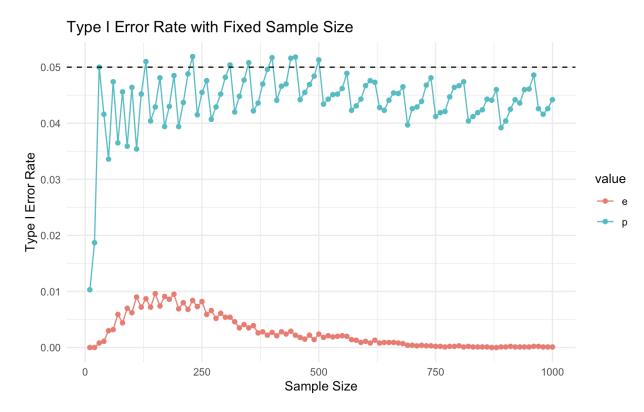
e-value

- $H_0: p = 0.5$
- $H_1: p = 0.6$

•
$$e = \frac{0.6^x \times (1 - 0.6)^{t - x}}{0.5^x \times 0.5^{t - x}}$$

• reject if $e > \frac{1}{0.05}$

p- and e-values are valid with pre-specified sample size t



simulating p- and e-value validity with early stopping

- 1000 samples from Bernoulli(p = 0.5)
- testing after every 10 samples

p-value

- $H_0: p = 0.5$
- $H_1: p > 0.5$
- p based on binomial tail probability
- reject if p < 0.05
- rejection in 26.2% of samples

e-value

- $H_0: p = 0.5$
- $H_1: p = 0.6$

•
$$e = \frac{0.6^x \times (1-0.6)^{t-x}}{0.5^x \times 0.5^{t-x}}$$

- reject if $e > \frac{1}{0.05}$
- rejection in 3.7% of samples

an example

- help !!! how much data should I collect ?????
- n = 200 observations from Bernoulli(p=0.6)

p-value

- e-value
- $H_0: p = 0.5$
- $H_1: p > 0.5$
- $p_{n=200} = 0.01$

• $(p_{n=93} = 0.048)$

- $H_0: p = 0.5$
- $H_1: p = 0.6$

•
$$e_{n=157} = 21.8 > \frac{1}{0.05}$$

• we could have stopped collecting data after 157 points !!

conclusions

- p-values are being abused
- e-values could lead to time and money saved in online experiments