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● First ever theorem about Fourier series
● But more importantly…



Introduction
Theorem (Dirichlet, 1829): The Fourier series of a piecewise-smooth f converges 
at every point of continuity. At discontinuities, it takes the middle value.

But more importantly… It showed that some desired 
properties do not hold at 
“exceptional yet negligible sets.”
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general, we need to be able to rule out “exceptional yet negligible sets.” 
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Why measure theory in probability?
This made it clear to analysts that to rigorously establish convergence results, 
we need to be able to rule out “exceptional yet negligible sets.” 

We simplify to the case of coin flips:
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If a property holds except on a set of measure zero, we say the property holds 
“almost everywhere,” or “almost surely.”

So the LLN holds with probability 1, or almost surely. 

And we are allowed to say this thanks to measure theory.
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Why measure theory in probability?

In 1933, Kolmogorov saw that measure and integration theory, originally 
developed to solve technical issues in Fourier analysis, could be used to make 
probability rigorous.

Besides the ruling out of problematic sets that we have explored, measure 
and integration are fundamental to the description of basic notions of 
probability such as expectation, random variables, convergence results, etc.



A Weird Problem



Result from Measure Theory



Borel Cantelli Lemma 1



Back to Problem!



Why does Strong Law of Large Numbers fail?
● What are the conditions for SLLN to hold? 

Talk to the person next to you!



Why do we care about the Law of Large Numbers?
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Why do we care about the Law of Large Numbers?

Intuitively, adding randomness to an already random system should increase 
randomness—

But the opposite happens: randomness concentrates around typical behavior, 
making outcomes almost completely predictable.
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“A random variable … that depends on the influence of 
many independent variables is essentially constant.”

-Michel Talagrand



Source: Direct quote from the lecture notes (Van Handel, 2016)
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Concentration Phenomenon, intuitively.

This begs the question: What do we mean by “small”? How “small”?
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Chebyshev’s Inequality:

So we have that the deviation decreases at least quadratically by Chebyshev’s.

But can we do smaller? 
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Concentration Phenomenon, intuitively.

Side note:
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“A random variable … that depends on the influence of 
many independent variables is essentially constant.”

-Michel Talagrand
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Important notes

Of course we can’t expect concentration to hold for completely arbitrary f and X.

● Function must be Lipschitz (Not too “sensitive” to any of our coordinates)
● The coordinates must be sub-Gaussian, sub-exponential
● etc.



A Concentration Result

Again, why should we care?



A Concentration Result

We illustrate with an example:
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A Concentration Result

So the length of random vector      should be 

(Recall that                                                                       ) 



A Concentration Result
Formally, we can state                            in terms of our                                   
standard concentration statement:
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A Concentration Result
With a simple application of Bernstein’s inequality we can get                          
the following bound:
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A Concentration Result

We want to note a few things about the following inequality:

● The length of random vector X is “essentially constant,” that is to say,        
it is essentially equidistant from the origin, that is, it is close to a sphere of 
radius

● The bound on our deviation does NOT depend on n. As n grows, almost 
all of our observations stay within a constant distance from 
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A Concentration Result

???



Source: Vershynin, 2018
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Applications to Statistics

(With very high probability)



Applications to Statistics
● Covariance matrix estimation
● High-dimensional regression (e.g. LASSO)
● Empirical risk minimization
● etc.



Fun Fact
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Questions…?


