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I N T R O  A N D  D A T A  S T R U C T U R E

Linear regression model.

Logistic function.
X = independent variables/predictors in the model
Y = dependent variable (binary)
p = probability of Y being 1 given X

model p as p(X) which is a function of X
use p(X) with X inputs to predict the probability of Y=1

beta coeffs            = parameters
define the relationship between
each predictor variable and the
log odds of the dependent
binary outcome (MLE)

X = independent variables/predictors in the model
Y = dependent variable (continuous)
p(X) = predicted value of with Y based on X 

beta coeffs            = coeffs that  
measures the expected change
in Y for a one-unit change in X,
holding all other predictors
constant (OLS)
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I N T R O  A N D  D A T A  S T R U C T U R E

Linear regression model.

Best for continuous, quantitative outcomes
Goal is to find a linear function that best fits the observed data

Useful for binary outcomes (e.g., yes/no, pass/fail)
Goal is to find the probability that the observation belongs to
one of the two classes

Logistic function.
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W H Y  N O T  L I N E A R  R E G R E S S I O N ?

Predicting binary medical conditions (e.g., stroke, drug overdose, epileptic seizure).
Issue: Linear regression predictions may be outside the valid range (e.g., negative
values or values greater than 1).

Logistic function.

constraint output between 0 and 1 
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W H Y  L O G I S T I C  R E G R E S S I O N
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L I N K  F U N C T I O N

    : probability of the occurrence
of an event; denotes the
probability that Y=1 for a given
set of predictor variables (i.e., in
medical context, the probability
that a patient has a disease, given
their symptoms and test results.)

mainly use the logit 

The other 3 also constrain the
predicted outcome from the
model between 0 and 1.
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maps this probability      to the log
odds of Y=1

maps probabilities from the
interval (0, 1) to the entire real
line which is useful for modeling
binary outcomes (i.e., success/
failure, yes/no) where      is the
probability of success

output the log-odds = logarithm
of the odds (ratio) of the event
occurring versus not occurring

positive        the odds of the
event occurring are greater
than the odds of it not
occurring 8



once we have our predictor/
covariates Xs and outcome
Y, we can set up the logistic
model using the logit
function

we solve for \pi and and thus get the probability of a positive response
(Y=1) using this model
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M L E  M E T H O D

Goal: find the optimal parameters
(betas) of the model that maximize this
function 
captures the probability of observing
the specific set of outcomes given the
predictor values and model parameters
(betas)
based on the product of probabilities
for each individual observation in the
dataset

runs over all cases where the observed
outcome is 1 - model's estimated
probability that Y=1
runs over all cases where the observed
outcome is 0 - model's estimated
probability that Y=0
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• Dataset: Heart Failure Clinical Records 

• Objective: Identify key predictors of death in
heart failure patients

• Key Variables:
   - Outcome (Y): Death event (1 = Yes, 0 = No)
   - Predictors (X): We had a lot of variables to
choose from as predictors but hypothesized
that: serum creatinine, ejection fraction, serum
sodium best predicted the outcome

Used forward/backward selection to identify
significant predictors
• Final Predictors:
   - Serum Creatinine & Ejection Fraction 
 (Serum sodium was removed due to
insignificance) 

• Run a univariate logistic regression for each
predictor

• Result: Higher serum creatinine & lower ejection
fraction increase mortality risk

M O D E L  S E T U P
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• Linear Model: p(X) = 0.136 + 0.133X
   - Does not fit the data well; predictions exceed
probability limits
   - Not suitable for binary outcomes

• Logistic Model: 

   - Provides a better fit for binary classification
   - Coefficients are interpretable as log-odds

• Coefficient Interpretation:
   - Serum Creatinine Coefficient (0.8): Each unit
increase in serum creatinine increases log-odds by
0.8
   - Odds of death increase by exp(0.8) ≈ 2.23 per
unit increase in serum creatinine

E X A M P L E
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• Linear Model: p(X) = 0.73 - 0.01X
   - Does not fit the data well; predictions exceed
probability limits
   - Not suitable for binary outcomes

• Logistic Model: 

   - Provides a better fit for binary classification
   - Coefficients are interpretable as log-odds

• Coefficient Interpretation:
   - Ejection Fraction Coefficient (-0.056): Each
unit increase in ejection fraction  decreases log-
odds by -0.056
   - Odds of death decrease by approximately
5.45% for each 1% increase in ejection fraction
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Thank you!
 Q&A？
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