Casual Inference Introduction

Foundational Problem of Casual Inference

- Drawing Conclusions on Causality
- In factual world want to know counterfactual
- Example: How does textbook affect math scores

- A = treatment, 1 if treated, 0 if not treated
- Y(1) = outcome of treated unit
- Y(0) = outcome of untreated unit

Potential Outcomes

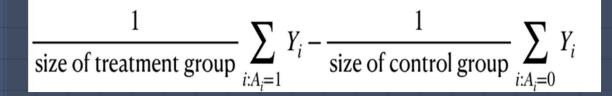
- Stable Unit Treatment Value Assumption (SUTVA)
- No interference with treatment units
- Consistency and definition of treatment
- Missing Values

_							
	Unit	А	Y(0)	Y(1)			
	1	1	?	80			
•	2	0	50	?			
	3	1	?	50			
	4	1	?	50			
	5	0	80	?			
	6	0	50	?			
	7	0	80	?			
	8	1	?	80			

3

Identification

- Find casual estimand through statistical estimand
- Average Treatment Effect
- Can also use Regression



4

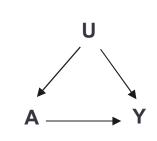
$$\mathbb{E}[Y|A=1] - \mathbb{E}[Y|A=0]$$

Y(0)	Y(1)
80	80
80	80
80	50
80	50
50	50
50	50
50	50
50	50

Threat by Confounders

16 units of data collected

- U for confounder, baseline math score
- Lower probability of High Baseline Score being treated

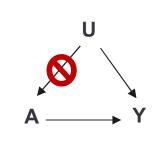


Y(0)	Y(1)
80	80
80	80
80	80
50	50
50	50
50	50
50	50
50	50

Randomization for experimental study

Assumption 1: SUTVA. If A = a, then Y = Y(a)

- Assumption 2: A is independent of U and Potential Outcomes
- Equal likelihood of treatment assignment



When Confounder is Known

Standardization

- Find average treatment effect within groups
- Calculate average weighted mean

- Difference
 - Average treatment effect of high baseline math scores

7

 Average treatment effect of low baseline math scores

$\hat{ATE} = P(X = 1) * \hat{ATE}_{X=1} + P(X = 0) * \hat{ATE}_{X=0}$

When confounder is

known

- Inverse probability weighting (IPW)
 - Probability of being treated within group
 - Use weighted linear regression

$$\mathbb{E}[Y(a)] = \mathbb{E} \frac{I(A = a)Y}{P(A = a | X)}$$

Observational Studies

- Can't assign assignment probabilities
- Higher dimensional data
- Ignorability

Matching R Package: Lalonde Dataset

- Job training program casual effect on real earnings in 1978
- Confounders
 - Age, years of education, race (Black or Hispanic), marital status, if they have a degree, real earnings in 1974 and 1975
 - Treatment is whether or not they did the job training program
 - re78 is real earnings in 1978.

age	¢	educ	÷	black	¢	hisp	\$	married	¢	nodegr 🗧 🗘	re74	÷ ۱	re75	¢	treat	÷	re78	¢
	37	1'	1		1		0		1	1		0		0		1	9930	0.050
	22	9	9		0		1		0	1		0		0		1	3595	5.890
	30	12	2		1		0		0	0		0		0		1	24909	9.500
	27	1	1		1		0		0	1		0		0		1	7506	5.150
	33	8	8		1		0		0	1		0		0		1	289	9.790

Inverse Probability Weighting

Find the propensity score

- Probability of unit being treated
- Use logistic regression to find propensity score

$$\mathbb{E}\frac{AY}{P(A=1|X)} - \mathbb{E}\frac{(1-A)Y}{1-P(A=1|X)}$$

ll.df = data.frame(lalonde)
ll.Sub = ll.df[c(1:445), c(1:8,12)]

logreg = glm(treat ~ ., data = ll.Sub, family = binomial)
ps = predict(logreg, type = "response")

ll.df\$weights <- 1/(ws.df\$treat*ps + (1-ws.df\$treat)*(1-ps))
lm(re78 ~ treat, data = ws.df, weights = weights)</pre>

Call: lm(formula = re78 ~ treat, data = ws.df, weights = weights)

Coefficients: (Intercept) treat 4550 1641

Standardization or G-Computing

Outcome regression of each group (treated and control)

Apply coefficients to all units of data

$\hat{\mathbf{E}}[\mathbf{Y}|\mathbf{A} = \mathbf{1}, \mathbf{X}] = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1^\mathsf{T} \mathbf{X}.$

ll.Nsub = ll.df[, c(1:9, 12)]
stzlin0 = lm(re78 ~ . -treat, data = ll.Nsub[ws.df\$treat == 0,])
ps0 = predict(stzlin0, ll.df)

stzlin1 = lm(re78 ~ . -treat, data = ll.Nsub[ws.df\$treat == 1,])
ps1 = predict(stzlin1, ll.df)

mean(ps1) - mean(ps0)

```
> mean(ps1) - mean(ps0)
[1] 1621.584
```

Bootstrapping to find

Variance

- Take multiple (1000) samples from dataset
- Sample with replacement
- Go through each process (IPW and Standardization) multiple times
- Standard deviation of means

dim(11.df)[1]
allipw = c()
fl_data = data.frame(lalonde)
for(i in 1:1000) {
 ll.df = fl_data[sample(1:445, 1000, replace = T),]
 ll.sub = ll.df[, c(1:8,12)]

logreg = glm(treat ~ ., data = ll.Sub, family = binomial)
ps = predict(logreg, type = "response")

```
ll.df$weights <- 1/(ll.df$treat*ps + (1-ll.df$treat)*(1-ps))
ipwreg = summary(lm(re78 ~ treat, data = ll.df, weights = weights))
ipwC = ipwreg$coefficients[2,1]
allipw = c(ipwC, allipw)</pre>
```

```
> mean(allipw)
[1] 1651.322
> sd(allipw)
[1] 450.3888
```

Bootstrapping to find

Variance

- Take multiple (1000) samples from dataset
- Sample with replacement
- Go through each process (IPW and Standardization) multiple times
- Standard deviation of means

allstz = c()
for(i in 1:1000) {
 ll.df = fl_data[sample(1:445, 1000, replace = T),]
 ll.Nsub = ll.df[, c(1:9, 12)]
 stzlin0 = lm(re78 ~ . -treat, data = ll.Nsub[ll.Nsub\$treat == 0,])
 ps0 = predict(stzlin0, ll.Nsub)

stzlin1 = lm(re78 ~ . -treat, data = ll.Nsub[ll.Nsub\$treat == 1,])
ps1 = predict(stzlin1, ll.Nsub)

```
allstz = c(allstz, (mean(ps1) - mean(ps0)))
```

```
> mean(allstz)
[1] 1612.033
> sd(allstz)
[1] 468.5759
```

Comparison to Book Result

From Textbook:

	est	se
neyman	1794.343	670.9967
fisher	1676.343	677.0493
lin	1621.584	694.7217

> matchest.adj = Match(Y = y, Tr = z, X = x, BiasAdjust = TRUE)
> summary(matchest.adj)

Estimate... 2119.7 AI SE..... 876.42 T-stat.... 2.4185 p.val.... 0.015583

From Code:

- IPW result: 1641
- Standardization result: 1621.584

THANKS!

Any questions?