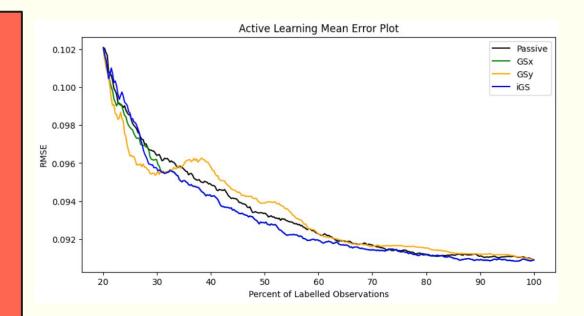

Troy Russo

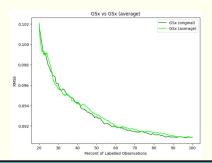
Active Learning

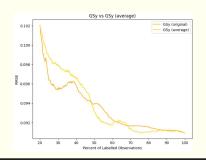
The Problem

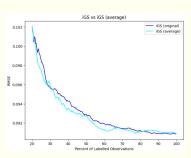

The Solution

- Start with unlabeled
- Label certain number of observations
- Run one iteration (linear regression or random forest common)
- Determine Sample(s) to label
- Repeat

When to stop


- RMSE stops decreasing significantly
- Not worth computational power
- Takes unneeded time to not improve model




Lots of Different Methods

Uncertainty	Query By Committee	Diversity Sampling	Expected Model Change	Greedy Sampling	
Select instances where the model's prediction s are least confident	Use an ensemble of models and choose instances where there is disagreem ent among them	Ensure that the selected samples cover a wide range of scenarios, reducing redundancy	that are expected to cause the largest	Selects the single data point that appears most informative according to a specific criterion	I am mainly concerned with Greedy Sampling Several Distinct types of Greedy Sampling (3 main)

Types of Greedy Sampling

GSx

- Selects each sample by:
 - Finding shortest distance to each unlabeled sample (not average distance from each point)
 - Selecting farthest distance from this list
- Independent of regression model since it samples based on input (computationally cheaper than the next 2)

GSy

- Selects each sample by:
 - Finding shortest
 distance from every
 predicted value
 (based on regression)
 to the actual value
 - Selects farthest distance from this list
- Has to update regression model each time

iGS

- Selects each sample by:
 - Finding each distance matrix from GSx and GSy and multiplying these matrices
 - Selects farthest distance in this matrix
- Computationally similar to GSy since most of cost is updating regression

Formulas and Variations

Formulas

$$d_{nm}^{\mathbf{x}} = ||\mathbf{x}_n - \mathbf{x}_m||, \quad m = 1, ..., k; n = k + 1, ..., N$$

 $d_n^{\mathbf{x}} = \min_{\mathbf{x}} d_{nm}^{\mathbf{x}}, \quad n = k + 1, ..., N$

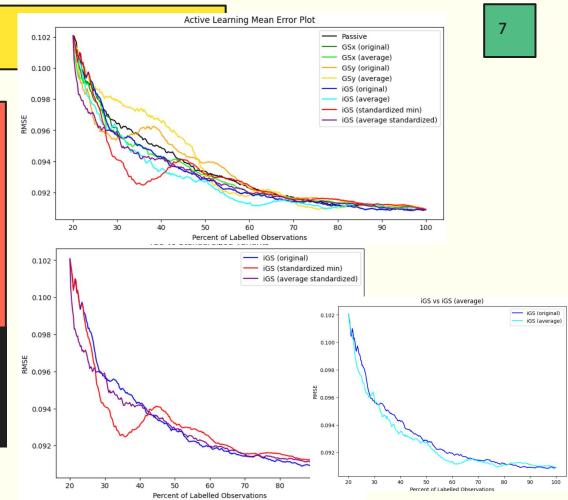
$$d_{nm}^y = ||f(\mathbf{x}_n) - y_m||, \quad m = 1, ..., k; n = k + 1$$

$$d_n^y = \min_{m} d_{nm}^y, \quad n = k + 1, ..., N$$

 $d_n^{\mathbf{x}y} = \min_m d_{nm}^{\mathbf{x}} d_{nm}^{\mathbf{y}}, \quad n = k+1, ..., N$

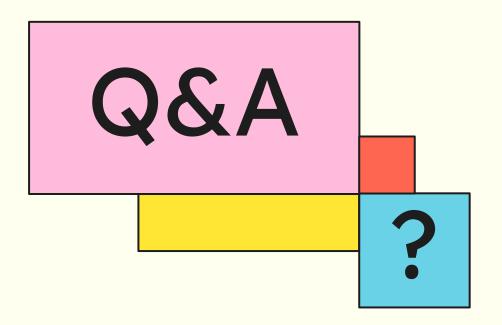
Standardization

- Instead of multiplying these distances we standardize
- Use z-dist to make x and y equal weight
- Add distances instead of multiplying


Average Distance

- Find average distance from each point
- Replaces min distance from each point

What's best?


- Large graph shows iGS variants are the best
- Significance tests show all iGS variants significantly different than GSx (cheaper)
- Significance tests/individual graphs show standardized iGS and iGS with average are the best two models.

	passive	GSx	GSxAvg	GSy	GSyAvg	iGS	١
passive	1.000000e+00						
GSx	9.352560e-39	1.0					
GSxAvg	8.204135e-52	0.031426	1.0				
GSy	9.922432e-54	0.000008	0.116008	1.0			
GSyAvg	4.527727e-19	0.0	0.0	0.0	1.0		
iGS	9.730048e-41	0.001448	0.597028	0.000703	0.0	1.0	
iGSAvg	5.554559e-35	0.0	0.0	0.0	0.000002	0.0	
iGSStd	4.871225e-54	0.000772	0.034862	0.000015	0.0	0.030242	
iGSAvgStd	5.761528e-52	0.300236	0.002289	0.009974	0.0	0.486444	

Next Steps

- Use different machine learning models
 - Random forest,xgboost
- Train models on different datasets

