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Information Theory

Information theory quantifies uncertainty and information, introduced by Claude Shannon in 1948

Some key concepts: entropy, KL Divergence



Entropy

Entropy measures the randomness/uncertainty of a system
The same definition from physics

Shannon’s Entropy:

H(X) = z PQX) log 5

High entropy means more randomness

Low entropy means less randomness



Entropy: Example

Fair coin vs. biased coin

Tossed 10 times, fair coin X has 5 heads, 5 tails; biased coin Y has 7 heads, 3 tails

Entropy for X: H(X) = YP(X) logﬁ =0.5 10g;15 + 0.5 logfl5 =1

Entropy for Y: H(Y) = $.P(Y) 1og$ = 0.7log— +0.3log— ~ 0.8



Entropy: Another Example

Two random variables: X ~ Bernoulli(m = 0.5), Y ~ Bernoulli(r = 0.99)

1 1 1
H(X) =YP(X) lOgP(X) = O.SIOgE + 0.5 logﬁ =1

1 1 1
= 1 = 0.99log——+ 0.01log—— ~ 0.
H(Y) =YP(Y) OgP(Y) 0.99 og0.99+00 %8501 0.08

H(X) is much larger than H(Y), means that X has more randomness than'Y



Kullback-Leibler (KL) Divergence

Measures how one probability distribution diverges from another

Formula:
P(z)

Dk (P||Q) ZP ) log

Q(z)

Properties:

- Asymmetry: Dg;, (P||Q) # D, (Q||P)
- Non-negative

- Zeroiff P=Q




Reminder: Likelihood Ratio Test

Likelihood Ratio Tests

Llet X;, X9, X3, ..., X,, be a random sample from a distribution with a
parameter 6. Suppose that we have observed X; = x;, Xo = x5, ---, X,, = z,,.
Define

. Sup{L(mlvm%'“axn;Q) NS SU}
~ sup{L(zy,z3,---,2,;0): 0 € S}’

To perform a likelihood ratio test (LRT), we choose a constant ¢ in [0,1]. We
reject Hy if A < ¢ and accept it if A > ¢. The value of ¢ can be chosen based on

the desired a.

https://www.probabilitycourse.com/chapter8/8_4_5_likelihood_ratio_tests.php



Hypothesis Testing & KL Divergence

Hypothesis testing: Null & alternative hypothesis, testing statistics, testing distribution, significant
level
P(X|Ho)

Likelihood Ratio Test (LRT) uses the likelihood ratio A = )
P(X|H1)

Take the log and normalizing by sample size n, we have A,, = —Zl ZOEQ
The A, has a very similar form to the KL Divergence D(P,||P,) = Y. PO(X)log—iogi
1

For large n, we will have A,, = E[A] = D(q||po) — D(q|lp,). With 1 = 0, we reject the null hypothesis
if D(qllpo) = D(qllp1)



Hypothesis Testing & KL Divergence

Suppose we now have a coin, we don’t know what is the probability of the coin landing on head. We
now have two hypothesis:

Hy: P(Head) = 0.5,H;: P(Head) = 0.7
We tossed the coin for 100 times, and we have 60 heads and 40 tails
With the formula on previous slide, D(q||py) = qui = 0.029, D(q|lp,) = qui = 0.03258
0 1

Since we have D(q||p1) > D(q||poy), we fail to reject H,
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