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Introduction

Let G be an n x n sociomatrix that is drawn from some
distribution F.

We are interested in testing the pair of hypothesis
Hy : F € Py, HaZFEP\Po.

i.e. we are interesting in testing if G is drawn from certain graph
model Py.
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Methodology

We introduce two results from random matrix theory to construct
our test statistics.

Theorem 1.
Suppose A is a random symmetric matrix with independent entries
such that
E(Aj) =0 and Var(d_ Aj)=1.
i#j
Then
1?3 (Amax(A) — 2) =g TWA,

n?3(=Amin(A) = 2) =4 TW,

where TW; is the Tracy-Widom distribution with parameter 1.
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Tracy Widom distribution

Standard Tracy Widom distribution
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(a) Standard Tracy Widom distribution
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Methodology

Theorem 2.

Suppose A is a random asymmetric matrix such that
E(Aj) =0 and Var(Aj) =1

Then
nop(A) =4 Exp(1).

where o,(A) is the smallest singular value of A.
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Methodology

Suppose the sociomatrix G is drawn from F = Py(8).

» We can always transform G into A using property of Py and
parameter 6.

» For instance, if we can parameterize a symmetric simple graph
G with some probability matrix P such that

Pr(Gj = 1|P) = Pj,
Then the normalized adjacency matrix is given as

P; — G

Aj = .
V(0= 1)Py(1 - Py)
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Methodology

P> The test statistic is given as
tsymm = n2/3()‘maX(A) - 2)7

tasymm = no(A).
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Methodology

P> The test statistic is given as
tsymm = n2/3()‘maX(A) - 2)7

tasymm = no(A).

> The test statistic should converge to Tracy-Widom /exp(1)
distribution for valid models.
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Methodology

Now suppose only G is given. How can we access A?
» First suppose G is drawn from some graph model Pj.
» We can estimate using G. In our case, we will plug in Omie.

» Then normalize G into A using 6 and compute the test
statistic.

» Reject if p-value < o = 0.05.
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Methodology

Will this always work?
Several caveats:

» This is model specific! i.e. for symmetric model, we require

1> (Amax(A) = Amax(A)) = 0p(1)/0p(1).

> Must have access to the MLE.
> Valid P, i.e. no 0/1 values on off-diagonal entries.
P> The convergence to Tracy-Widom is always slow.

» But we can fix it via bootstrap!
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Valid Models

Below is a list of graph models that can be applied with our
method:
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Valid Models

Below is a list of graph models that can be applied with our

method:
Undirected Directed
Binary graph ER, SBM, Beta, | ER, SRM
SRM
Multi-graph DCSBM
Continuous graph || SRM SRM

» Model that doesn't work: Latent space model.

» We are currently working on ERGM!
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Algorithm

Suppose we want to fit a graph G with respect to several graph
model.
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Algorithm

Suppose we want to fit a graph G with respect to several graph
model.

> Arrange the models of interest in a descending order of
complexity, i.e. ERGM D Beta D SBM D ER.

P Test starting with the simplest model.

v

» If all models of interest are rejected, we probably need more
complex models to fit our data.

Our estimate of the model is the first model we fail to reject.
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Zachary karate data
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Zachary karate data

Test statistics of karate dataset
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(c) Zachary karate data
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Supplementary: Bootstrap correction

1. Given G, compute the MLE 8 for a given model Py.
2. Forb=1,...,B:
2.1 Generate G} assumed graph model Po(8).

2.2 Compute A, and A% for A*:
A* = Gp — P .
(n—1)P(1—P)
3. Reject Hy when
MA) =1 M(A) = f
Thoot = Htw + Stw maX< il ) - ol ) H")
51 Sn

is bigger than quantile of TW.
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