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Introduction

Let G be an n × n sociomatrix that is drawn from some
distribution F .

We are interested in testing the pair of hypothesis

H0 : F ∈ P0, Ha : F ∈ P \ P0.

i.e. we are interesting in testing if G is drawn from certain graph
model P0.
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Methodology

We introduce two results from random matrix theory to construct
our test statistics.

Theorem 1.
Suppose A is a random symmetric matrix with independent entries
such that

E (Aij) = 0 and Var(
∑
i 6=j

Aij) = 1.

Then
n2/3(λmax(A)− 2)→d TW1,

n2/3(−λmin(A)− 2)→d TW1

where TW1 is the Tracy-Widom distribution with parameter 1.
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Tracy Widom distribution

(a) Standard Tracy Widom distribution
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Methodology

Theorem 2.
Suppose A is a random asymmetric matrix such that

E (Aij) = 0 and Var(Aij) = 1.

Then
nσn(A)→d Exp(1).

where σn(A) is the smallest singular value of A.
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Methodology

Suppose the sociomatrix G is drawn from F = P0(θ).

I We can always transform G into A using property of P0 and
parameter θ.

I For instance, if we can parameterize a symmetric simple graph
G with some probability matrix P such that

Pr(Gij = 1|P) = Pij ,

Then the normalized adjacency matrix is given as

Aij = Pij − Gij√
(n − 1)Pij(1− Pij)

.
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Methodology

I The test statistic is given as

tsymm = n2/3(λmax(A)− 2),

tasymm = nσ(A).

I The test statistic should converge to Tracy-Widom/exp(1)
distribution for valid models.

8 / 15



Methodology

I The test statistic is given as

tsymm = n2/3(λmax(A)− 2),

tasymm = nσ(A).

I The test statistic should converge to Tracy-Widom/exp(1)
distribution for valid models.

8 / 15



Methodology

Now suppose only G is given. How can we access A?

I First suppose G is drawn from some graph model P0.
I We can estimate θ̂ using G . In our case, we will plug in θ̂MLE .
I Then normalize G into Â using θ̂ and compute the test

statistic.
I Reject if p-value < α = 0.05.
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Methodology

Will this always work?

Several caveats:
I This is model specific! i.e. for symmetric model, we require

n2/3(λmax(A)− λmax(Â)) = op(1)/Op(1).

I Must have access to the MLE.
I Valid P̂, i.e. no 0/1 values on off-diagonal entries.
I The convergence to Tracy-Widom is always slow.
I But we can fix it via bootstrap!
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Valid Models

Below is a list of graph models that can be applied with our
method:

Undirected Directed
Binary graph ER, SBM, Beta,

SRM
ER, SRM

Multi-graph DCSBM
Continuous graph SRM SRM

I Model that doesn’t work: Latent space model.
I We are currently working on ERGM!
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Algorithm

Suppose we want to fit a graph G with respect to several graph
model.

I Arrange the models of interest in a descending order of
complexity, i.e. ERGM ⊇ Beta ⊇ SBM ⊇ ER.

I Test starting with the simplest model.
I Our estimate of the model is the first model we fail to reject.
I If all models of interest are rejected, we probably need more

complex models to fit our data.
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Zachary karate data

(b) Karate club
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Zachary karate data

(c) Zachary karate data
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Supplementary: Bootstrap correction

1. Given G , compute the MLE θ̂ for a given model P0.
2. For b = 1, . . . ,B:

2.1 Generate G?
b assumed graph model P0(θ̂).

2.2 Compute λ?
max and λ?

min for A?:

A? := G?
b − P̂√

(n − 1)P̂(1− P̂)
.

3. Reject H0 when

Tboot = µtw + stw max
(
λ1(Â)− µ̂1

ŝ1
,−λn(Â)− µ̂n

ŝn

)

is bigger than quantile of TW.
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