Estimating Theoretical Allele Frequencies of Cystic Fibrosis Using an EM Algorithm

Rachel Ferina

Genetics Background

- Genes: functional units of heredity
 Made up of DNA
- Alleles: versions of a gene
 - Dominant--phenotypically expressed
 - Recessive--only phenotypically expressed when dominant alleles aren't present
 - 1 allele inherited from each parent

Allele Frequencies

- Frequency of Allele A: <u>Number of copies of allele A in population</u> Total number of copies of gene in population
- Change in allele frequencies over several generations indicates evolution in a population
- Applications in population genetics
 - Genetic diversity and gene pool richness
 - Genetic association with diseases, estimating number of individuals in a population susceptible to disease or drug resistance

Cystic Fibrosis

- Genetic disease resulting in excess production of thick mucus
 - Affects the lungs and digestive system
 - Often results in shorter lifespan
- Inherited recessively in CFTR gene

	Α	а
А	AA	Aa
а	Aa	аа

Expectation Maximization (EM) Algorithm

- Useful for calculations with incomplete data
- E Step: Expectation
 - Compute expected genotype based on observed phenotype
- M Step: Maximization
 - Determines maximum for parameters
- Iterate until convergence of likelihood
 - Slow convergence
- Use it to find maximum likelihood estimate (MLE)

Estimating Theoretical Allele Frequencies of Cystic Fibrosis

- Random sample of 200 subjects
- 12 subjects diagnosed with Cystic Fibrosis
- Goal: Estimate population allele frequencies for A and a $-p_A$ and p_a
 - Missing data: genotypes

Cystic Fibrosis	Unaffected	
	AA	
aa	Aa	

•
$$t_0 = aa, t_1 = Aa, t_2 = AA$$

Log Likelihood

- Use Hardy-Weinberg equilibrium allele frequencies
 - $\circ \quad p^2 + 2pq + q^2 = 1$
- Complete Log Likelihood = $n_{AA}\log(p^2) + n_{Aa}\log(2pq) + n_{aa}\log(q^2)$
- Incomplete Log Likelihood = $n_A \log(p^2 + 2pq) + n_a \log(q^2)$
- While loop to carry out EM algorithm with incomplete log likelihood
 Ourrent likelihood previous likelihood > 0.0001

E step

- Calculate current allele frequency estimate with function 2q/(1+q)
 Probability based on current q estimate
 Probability of Aa given AA or Aa
- Split up unaffected group into carriers $(t_1 = Aa)$ and unaffected homozygous $(t_2 = AA)$; example calculation for first iteration
 - Multiply 188 by function 2q/(1+q)

 $t_1 = 21.283$

188 - previous answer

•
$$t_2 = 166.717$$

M step

- Estimates new q with function $(2t_0 + t_1)/2n$
 - Conditional on current allele frequency estimates
 - \circ Updates p_a via gene counting
- Alternate with E step until convergence of likelihood is reached

EM Algorithm Results

Iteration	t ₀	t ₁	t ₂	New q $(2t_0 + t_1)/2n$	1 - q	Log Likelihood
	(aa)	(Aa)	(AA)	(p _a)	(p _A)	
1	12	21.2830	166.7170	0.3733	0.6267	-51.8655
2	12	38.2373	149.7627	0.3155	0.6845	-47.3999
3	12	50.6259	137.3740	0.2855	0.7145	-46.6292

• • •

13	12	73.9795	114.0205	0.2452	0.7546	-45.3936
14	12	73.9796	114.0204	0.2451	0.7548	-45.3935
15	12	73.9796	114.0204	0.2450	0.7550	-45.3935

Cystic Fibrosis Allele Frequencies

• For a theoretical sample of 200 subjects with 12 diagnosed with Cystic Fibrosis:

 \circ p_a = 0.245

$$\circ p_{A} = 1 - p_{a} = 0.755$$

	Α	а
А	AA	Aa
а	Aa	аа

Acknowledgements

Seth Temple--PhD student, Statistics

Elizabeth Thompson--Statistical Inference from Genetic Data on Pedigrees

Sharon Browning--Biostatistics Research Professor