Multiple Testing

Zitong (Cathy) Qi Mentor: Anna Neufeld

Outline

- > Brief Review of Hypothesis Testing
- > Motivation for Interim Analysis & Multiple Testing Techniques
- > Alpha-spending function and FWER
- > Simulation Study: Comparing Methods
- > Extensions

Motivating Example:

In clinical trial, with a treatment and a control group

Null hypothesis:

Mean of blood pressure (treatment)

= Mean of blood pressure(control)

$$\mu_T = \mu_C$$

Alternative hypothesis:

Mean blood pressure (treatment)

≠ Mean blood pressure(control)

(treatment effect)

$$\mu_T \neq \mu_C$$

BRIEF review of NHST - null hypothesis significance testing for single test

P-value: Assuming the null hypothesis is true, how extreme is our observed statistic

(is our result simply due to random fluctuations)

Alpha: We choose a cutoff called alpha. If p-value is less than alpha, we reject the null and we call the result statistically significant

Type I error: when we conclude that the treatment and the control groups are different, even though in reality they are the same (wrongly reject the null hypothesis)

ALPHA: Probability of making a Type I error when conducting 1 SINGLE TEST

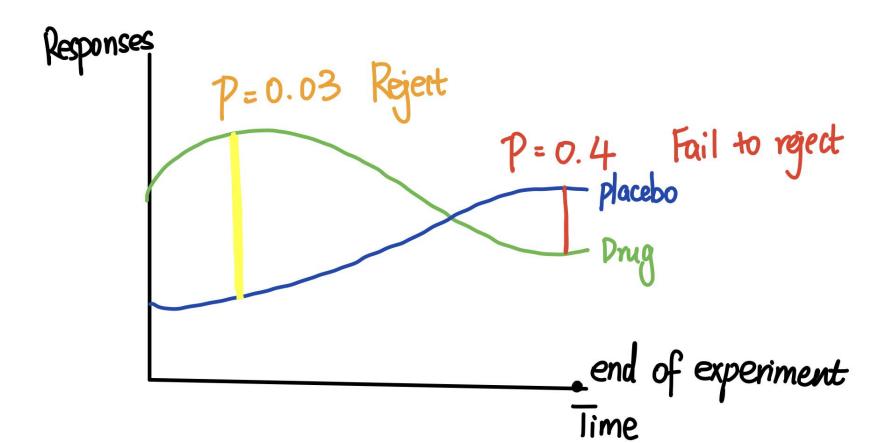
Family_Wise Error Rate

- Test every week as we recruit new patients to the trial?
- When scientists want to do repeated tests and follow treatment and control group over time, the probability of making a Type 1 error is no longer controlled!

FWER -> probability of making at least one Type I error at a specific significance level(Alpha) among multiple tests

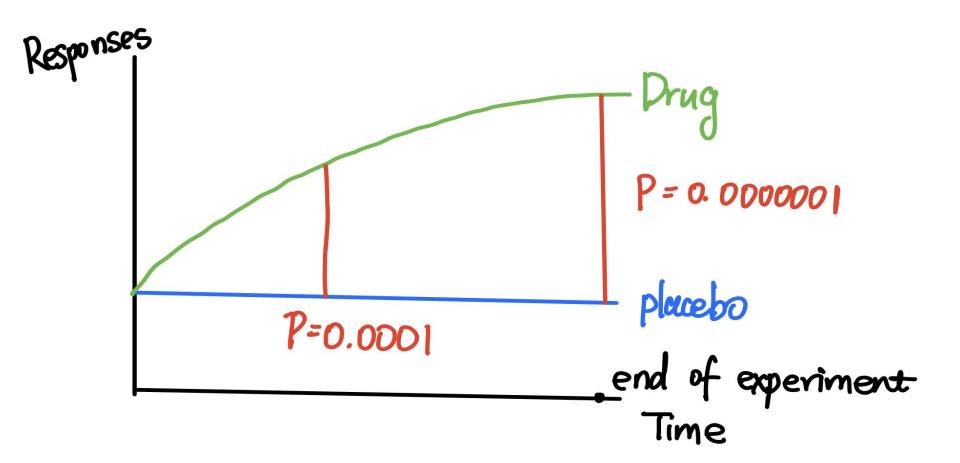
Interim Analyses

Null is true, alpha = 0.05



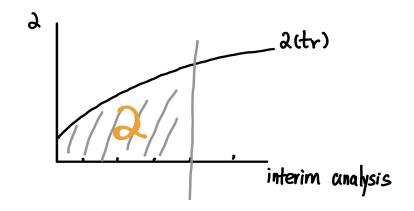
Interim Analyses

Null is false, alpha = 0.05



Multiple Testing Techniques: Alpha-spending functions

- In interim analyses, Pr(FWER) = Alpha
- Group sequential boundary: Allocate Alpha over k interim analyses
- Alpha -> an increasing function, alpha(t_r)
 (t_r) -> information fraction, 0-1



Alpha-spending functions:

- Bonferroni Correction: (most general technique)
 fixed alpha for each analysis (alpha/m)
- Sequential monitoring (DEPENDENCE)
- O'Brien and Fleming: more conservative stopping boundaries at early stages, larger power at the END
- Pocock: same significance level at each interim analysis, being able to stop early λ_{\parallel}

R simulation

Verify power, interim analyses properties of Alpha-spending functions

 Sequentially monitor trials both under null (same mean for treatment and control) and under the alternative (different means, treatment_effect)

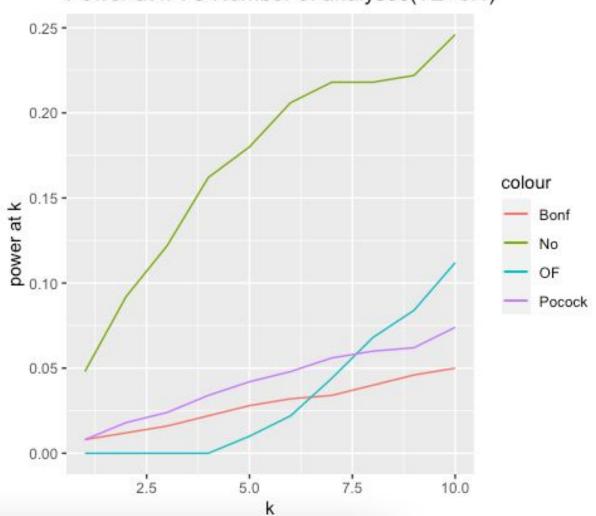
R Simulation Results (Null is True)

Control at level 0.05

•	FWER(probability of stopping the trial and concluding treatment and control are different)	K(average stopping time, among trials where we stopped)	. 0.005
No correction	0.20	3.79	
Bonferroni	0.02	4.20	
O'Brien & Felming	0.05	78.33	
Pocock	0.05	4.24	<0.010b
		increasi hard t	ng thresholds to reject e beginning

R Simulation Results (Null is False)

Power at k VS Number of analyses(TE=0.1)



Extensions:

 Pocock is more powerful than Bonferroni (dependence)

Can we do better?

 mFDR -> Reject as many null as possible while guaranteeing no more than alpha% of those rejected null are false positives

Extensions:

Alpha-spending functions:

Alpha-investing functions:

Fixed boundary

- --number of planned analyses
- --initial alpha

Advanced boundary
--change based on results of previous test

Goal:

Control probability of making at least one type I error (FWER)

Goal:

control a rate that depends on number of all rejected null, and number of rejected true nulls (mFDR)

THANK YOU

Acknowledgement:

- -- THANK YOU Anna for guiding me through!!!
- -- Appreciate the opportunity offered by DRP

