

Cluster Analysis

Renee Chien Mentors: Daniel Suen, David Marcano Fall 2021

Table of contents

Clustering Overview, K-means

Results Analysis + Discussion

Data Set + Features

Conclusions + Takeaways

Clustering Overview

A Way to Find Subgroups within a Data Set

K-Means and Hierarchical

K-Means Clustering

Dissimilarity measure: Euclidean distance

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2,$$

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 \right\}$$

K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Visualization of K-Means

Different Runs of K-Means

Challenges with K-Means/Clustering

K-means

"How many clusters?"

Clustering in General

Potential "outliers" that don't truly belong in any cluster

Perturbations in Data - changes in the set effect clusters drastically

Elbow Method

For deciding the number of clusters to use for k-means clustering

K-means Simulation

12 - ##### K-means Clustering with K=2

13 We begin with a simple simulated example in which there truly are two clusters in the data: the first 25 observations have a mean shift relative to the next 25 observations.

```
15 {r Two Clusters}
16 set.seed(2)
17 \times (- matrix(rnorm(50 * 2), ncol = 2))
18 x[1:25 , 1] <- x[1:25 , 1] + 3
19
   x[1:25, 2] <- x[1:25, 2] - 4
    km.out <- kmeans(x, 2, nstart = 20)
23
24
25
    km.out$cluster
30 plot(x, col = (km.out\cluster + 1),
31 main = "K-Means Clustering Results with K = 2".
32 	ext{ xlab} = "", 	ext{ ylab} = "", 	ext{ pch} = 20, 	ext{ cex} = 2)
33 .
```

K-means Simulation

X

My Data Set

My Spotify Wrapped playlist: My 100 most-played songs of 2021

My Choice of K

(How many clusters to use)

Applying K-Means Clustering

On my data set

What about Hierarchical?

Dendrograms of Three Modes of Linkage

Results from Hierarchical (Complete)

Takeaways from the DRP

Citations

Information

An Introduction to Statistical Learning Daniel Suen and David Marcano

Images

K-Means Clustering Plot - wikimedia.org Elbow Plot - vitalflux.com Book Cover - statlearning.com

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Second Edition

Thank You

for your audience!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**