Introduction to Bayesian Data Analysis

Xuweiyi Chen

What is Bayesian Statistics?

Suppose we have y as a data vector, Θ is the vector for parameters of model, then we have

- L(y | Θ)
- π(θ)
- $\pi(\Theta \mid y) \propto L(y \mid \Theta) \pi(\Theta)$

Likelihood Prior Posterior

Difference between frequentist statistics and Bayesian statistics

Frequentist:

- confidence interval
- point estimation
- p-value, power,
- significance

Bayesian:

- credible interval
- Bayes Factor
- prior
- posterior

Suppose that during a recent doctor's visit, you tested positive for a very rare disease. If you only get to ask the doctor one question, which would it be?

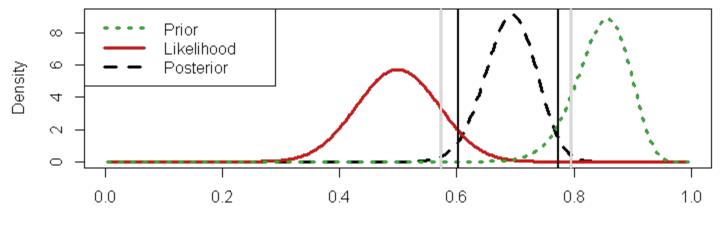
- a. What's the chance that I actually have the disease?
- b. If in fact I don't have the disease, what's the chance that I would've gotten this positive test result?

people.			
	test positive	test negative	total
disease	3	1	4
no disease	9	87	96
total	12	88	100

TABLE 1.1: Disease status and test outcomes for 100

Borrowed from Bayes rules book

Prior: beta(52.22,9.52); Data: B(50,25); Posterior: beta(77.22,34.52)



theta

Borrowed from Wesley

MCMC sampling

In order to sample from the posterior : $\pi(\Theta \mid y) \propto L(y \mid \Theta) \pi(\Theta)$

- Metropolis-Hastings
- Gibbs Resampling

Data

We used data from a kaggle challenge: Twitter tweets data to do sentiment analysis

34	0	<pre>it was a hard monday due to cloudy weather. disabling oxygen production for today. #goodnight #badmo</pre>	
35	1	it's unbelievable that in the 21st century we'd need something like this. again. #neverump #xenopho	
36	Θ	<pre>#taylorswift198 9 bull up: you will dominate your bull and you will direct it whatever you want it</pre>	
37	θ	morning~~ #travelingram #dalat #ripinkylife	

Brief Introduction on Topic Model

In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract "topics" that occur in a collection of documents.

Latent Dirichlet Allocation

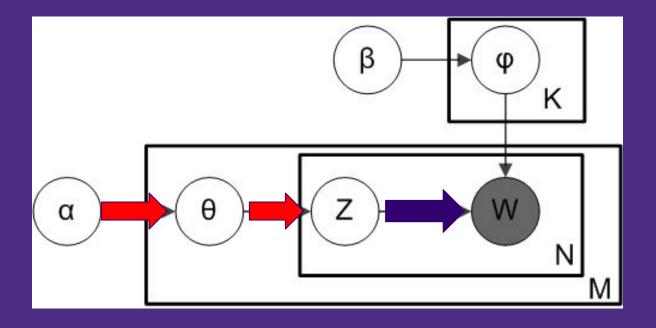
Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic idea is that documents are represented as random mixtures over latent topics, where each topic is characterized by a distribution over words.¹

LDA assumes the following generative process for each document \mathbf{w} in a corpus D:

- 1. Choose $N \sim \text{Poisson}(\xi)$.
- 2. Choose $\theta \sim \text{Dir}(\alpha)$.
- 3. For each of the *N* words w_n :
 - (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$.
 - (b) Choose a word w_n from $p(w_n | z_n, \beta)$, a multinomial probability conditioned on the topic z_n .

Borrowed from original Paper

LDA Diagram



α is the per-document topic distributions,

 $\boldsymbol{\theta}$ is the topic distribution for document m,

z is the topic for the n-th word in document m

w is the specific word

Source from Tyler Doll

Document to Topic for each word

α is the per-document topic distributions,

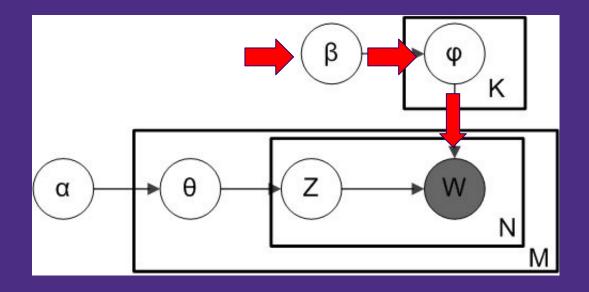
 θ is the topic distribution for document m,

z is the topic for the n-th word in document m

w is the specific word

topic for word z: k

LDA Diagram



 β is the per-topic word distribution,

 $\boldsymbol{\phi}$ is the word distribution for topic k,

w is the specific word

Source from Tyler Doll

Topic generate each word based on k

 $\boldsymbol{\beta}$ is the per-topic word distribution,

 $\boldsymbol{\phi}$ is the word distribution for topic k,

w is the specific word

Simulation with Rstan

Marginal Posterior:

α is the per-document topic distributions,

 $\boldsymbol{\beta}$ is the per-topic word distribution,

 $\boldsymbol{\theta}$ is the topic distribution for document m,

 $\boldsymbol{\phi}$ is the word distribution for topic k,

z is the topic for the n-th word in document m w is the specific word

$$egin{aligned} p(heta, \phi | w, lpha, eta) &\propto & p(heta | lpha) p(\phi | eta) p(w | heta, \phi) \ &= & \prod_{m=1}^M p(heta_m | lpha) * \prod_{k=1}^K p(\phi_k | eta) * \prod_{m=1}^M \prod_{n=1}^{M[n]} p(w_{m,n} | heta_m, \phi). \end{aligned}$$

Source from Stan

Result

Label 0:

chant activists conceded inventory inventory fishburn send send advisors play ana revenge badday

Result

label 1:

