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What is Bayesian Statistics?

Suppose we have y as a data vector, © is the vector
for parameters of model, then we have

- Ly | ©) Likelihood
- 1(O) Prior
- (O] y)e< Ly | ©) m(O) Posterior
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Difference between frequentist statistics
and Bayesian statistics

Frequentist:

- confidence interval
- point estimation
- p-value, power,

- significance

Bayesian:

- credible interval
- Bayes Factor

- prior

- posterior




Example

Suppose that during a recent doctor’s visit, you tested
positive for a very rare disease. If you only get to ask the
doctor one question, which would it be?

a. What's the chance that | actually have the disease?

b. Ifinfact| don’t have the disease, what's the chance that | would’ve
gotten this positive test result?

TABLE 1.1: Disease status and test outcomes for 100
people.

test positive test negative total

disease 3 1 4
no disease 9 87 96
total 12 38 100 Borrowed from

Bayes rules book



Example

Prior: beta(52.22,9.52); Data: B(50,25); Posterior: beta(77.22,34.52)
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https://www.r-bloggers.com/author/wesley/

MCMC sampling

In order to sample from the posterior :
(6] y) o< Ly | ©) (6)

- Metropolis-Hastings

- Gibbs Resampling
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Data

We used data from a kaggle challenge: Twitter tweets
data to do sentiment analysis
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Brief Introduction on Topic Model

In machine learning and natural language processing,
a topic model is a type of statistical model for
discovering the abstract "topics” that occur in a
collection of documents.

W


https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Statistical_model

Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic idea is
that documents are represented as random mixtures over latent topics, where each topic is charac-
terized by a distribution over words.!

LDA assumes the following generative process for each document w in a corpus D:

1. Choose N ~ Poisson(E).

2. Choose 8 ~ Dir(a.).

3. For each of the N words w,,:

(a) Choose a topic z, ~ Multinomial(8).
(b) Choose a word w,, from p(wy |z,,B), a multinomial probability conditioned on the topic
Zn.

Borrowed from original Paper
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LDA Diagram

a is the per-document topic
distributions,

0 is the topic distribution
for document m,

z is the topic for the n-th
word in document m

w is the specific word

Source from
Tyler Doll
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Document to Topic for each word

a is the per-document topic
distributions,

0 is the topic distribution

Multinomial for document m,

Dmchlet

z is the topic for the n-th
word in document m

w is the specific word

topic for word z: k
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LDA Diagram

E)

¢ is the word distribution
o F for topic k,

w is the specific word

B is the per-topic word
distribution,

Source from
Tyler Doll UNIVERSITY of WASHINGTON



Topic generate each word based on k

Dlrlchlet

Multinomial

—

B is the per-topic word
distribution,

¢ is the word distribution
for topic k,

w is the specific word
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a is the per-document topic
distributions,

B is the per-topic word

Simulation with Rstan distribution,

0 is the topic distribution
for document m,

Marginal Posterior: @ is the word distribution
for topic k,

z is the topic for the n-th
word in document m

w is the specific word

p(0, 9lw, o, B) o< p(0la)p(9|B)p(wl|6, ¢)

) Hk 1p(¢klﬁ) H n—l p( mnwm’qb)'

Source from Stan
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Result
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Result
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