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1. Introduction

1.1. Multiple Testing

Classical statistics focuses on testing a single null hypothesis Hj, where
p-value evaluates how extreme is our observed statistic, assuming the null
hypothesis is true. Then, we choose a cutoff called alpha, a. If p-value is
less than «, we reject the null and we call the result statistically significant.
When we conclude that the treatment and the control groups are different,
even though in reality they are the same, we make a type I error.

However, things are complicated in the real world. Instead of testing one
null hypothesis each time, scientists often perform multiple testing on large
data. Multiple testing refers to any instance that involves the simultaneous
testing of more than one hypothesis. What if we want to test every week
as we recruit new patients to the trial? When scientists want to conduct
multiple tests all at once, or when they want to follow an experiment over
time, the probability of making a type I error on each individual test is fine.
But the probability of making at least one type I error is very high. Notice
that « is the probability of making a Type I error when conducting only
one single test. Thus, adjustments needed for multiple testing procedure to
maintain the overall type I error rate.

1.2. Interim Analysis

When doing hypothesis testing, suppose their is truly no different between
the treatment and control group. If we allow ourselves to look at the trial
every day to conduct a test for the difference, eventually we will find a day
where the treatment and control group are different with a p-value less than
a, 0.05. So we should not allow ourselves to look at the data over and over
again without penalty.



On the other hand, if a treatment works extremely well and the evidence
is clear early on, we want to be able to stop the triall We should not waste
resources, and if the treatment is lifesaving we should not deny treatment to
the control group.

1.3. Family-Wise Error Rate

Instead of trying to control the probability of making a false discovery,
type I error in a single test, in multiple testing with many null hypotheses,
we try to control the probability of making at least one type I error, false
positives, among all null hypotheses.

For one single test, there are four different possibilities with the hypothesis
being true and false and our decision of rejecting or failing to reject.
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When it comes to multiple testing, Family-Wise Error Rate is represented
by Probability(V > 1). We can control the FWER, making at least one type
I error among all tests, when for each hypothesis test, probability of making
a type I error is alpha . Calculated by FWER(a) =1 — (1 — «)™. While
assuming FWER is less than or equals to alpha.

1.4. a-spending functions

If we want to do interim analyses, and we also want to keep the Prob-
ability of making at least one type I error rate, the family-wise error rate
to a, we need group sequential boundaries where we define a critical value
at each interim analysis. To do this, we need to allocate o over k interim
analyses. This is exactly the idea of a-spending functions. It treats «,
the cutoffs, as an “increasing” function, denoted by a(t,). Where ¢, rep-
resents the information fraction, determined by the information observed
at t and total information expected at the scheduled terminal, has nothing
to do with the actual time. The ¢, is calculated by the % .
time(whole trial is 1, half of the trial is 0.5). Notice that ¢, is always be-
tween 0 and 1.

We are going to analyze three different alpha-spending functions to con-
trol the FWER.



The Bonferroni Correction is a very general method that can be used
in any multiple testing scenario. which sets the threshold for rejecting each
hypothesis to -, where m represents the total null hypotheses performed and
« represents the probability of making at least one false discoveries among all
m tests. For example, in order to control the FWER at 0.05, when testing
m = 50 null hypotheses, it means to control each null hypothesis at level
o = % = 0.001. Such method successfully controls the FWER. However,
while making sure we don’t falsely reject too many null hypotheses, rejecting
few null hypotheses makes more type II errors (when nulls are false, we fail
to reject), so power is low. We conclude that the Bonferroni Correction
is neither the most powerful nor the best approach, but it is very easy to
compute.

To be more specific, let’s look at functions for sequential methods that
take advantage of the fact that we’re using some of the same patients to
calculate a p-value at each time point, and we're just adding more patients
over time. Therefore, the p-values you compute at each interim analysis are
dependent and we can exploit this dependence by using O’Brien and Fleming
and Pocock approaches.

O’Brien and Fleming approach uses more conservative stopping bound-
aries at early stages. Puts more priority on power at the end of the study.
Its cutoff over time can be represented by an increasing model, which has
larger thresholds as we perform more analyses and make it hard to reject the
null at the beginning of the test.

Pocock approach uses the same significance level at each interim analysis.
Puts more priority on being able to stop early. Its cutoff over time can be
represented by a flat model.

2. R simulation

2.1. Setting

We are going to use R simulation to verify power and interim analyses
properties of Alpha-spending functions and compare those properties be-
tween no correction, Bonferroni’s Correction, O’Brien & Fleming method,
and Pocock method. We are going to sequentially monitor trials both under
the null(same mean for treatment and control group) and under the alter-
native hypotheses(there is some treatment effect between the drug and the
placebo).



Assuming we have 100 people in treatment and 100 people in control
group. The scheduled terminal is 10 analyses. The cutoff is computed auto-
matically from a shiny app:

No correction’s cutoff: (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05)

Bonferroni’s cutoff: (0.05/10, 0.05/10, 0.05/10, 0.05/10, 0.05/10, 0.05/10,
0.05/10, 0.05/10, 0.05/10, 0.05/10)

O’Brien and Fleming’s cutoff: (0.0001, 0.0001, 0.0001, 0.0010, 0.0032,
0.0071, 0.0126, 0.0197, 0.0279, 0.0369)

Pocock’s cutoff:(0.0106, 0.0106, 0.0106, 0.0106, 0.0106, 0.0106, 0.0106,
0.0106, 0.0106, 0.0106)

2.2. Null hypothesis is true

When the null hypothesis is true, if we reject the null, we make a type
I error and stop the experiment. We repeat this process 5000 times. The
mean of making a type I error among 5000 trials is the Family-Wise Error
Rate and we are also going to look at the average stopping point of interim
analyses among trials where we stopped.

“ FWER(probability K(average

of stopping the stopping
trial and time,
concluding among
treatment and trials
control are where we
different) stopped)
No correction 0.20 3.79
Bonferroni 0.02 4.20
O'Brien & Felming 0.05 8.33
Pocock 0.05 4.24

When null is true, our goal is to control the FWER to be below alpha
which is 0.05. Alpha-spending functions: Bonferroni, O’Brien & Fleming,
Pocock successfully did that. Bonferroni’s FWER is much lower than alpha,
which is good as it means fewer type I mistakes, but it will hurt the power
as it is too conservative and makes it almost impossible to reject any of the
false null hypotheses. Bonferroni and Pocock has similar average stopping
time since they have similar constant thresholds. The average stopping time
for O’Brien & Fleming is much larger, it makes sense since it has increasing
thresholds that make it hard to reject at the beginning.
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2.3. Null hypothesis is false
When null is false, if we reject the null, we stop the experiment. We

repeat this process for 500 times. The mean of rejecting the null is the power
of the method.
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From the above figures, we can conclude that no correction has the highest
power but we don’t care because its trade-off is that it does not control the
type I error rate at all. Pocock’s power is higher than Bonferroni because it
exploits dependence. O’Brien & Fleming has lower power than Pocock at the
beginning than higher later, this makes sense because the cutoff for O’Brien
& Fleming is pretty low at first as an increasing function, so it makes it hard
to reject the null, thus resulting in lower power.

3. Extensions

3.1. The Marginal False Discovery Rate

In the R simulation, we see that the Pocock procedure is more powerful
than the Bonferroni Correction as it exploits dependence. Can we do even
better by exploiting the dependence more?

While controlling the FWER is too conservative and makes it almost
impossible to reject any of the false null hypotheses, it has extremely low
power. Instead we can tolerate a few type I errors while making sure most
of the rejected null are not false positives, type I errors. In other words,
reject as many null hypotheses as possible while guaranteeing no more than
« percent of those rejected null are false positives. This is the process of
controlling marginal false discovery rate.

3.2. Alpha-investing functions

When we sequentially monitor trials with multiple testing, in order to
control the marginal false discovery rate, we need alpha-investing functions.
We are going to compare their properties with the alpha-spending functions.

Alpha-spending functions have fixed boundaries that depend on number
of planned analyses and the initial alpha, so you can tell all the cutoffs before
actually performing the test. However, alpha-investing functions have more
advanced boundaries that can be changed based on results of previous tests,
so you can’t tell all cutoffs in advance until you actually start the test.

The goal for alpha-spending functions is to control the probability of
making at least one type I error, the family-wise error rate, while the goal
for alpha-investing functions is to control a rate that depends on number
of all rejected null, and number of rejected true nulls, the marginal false
discovery rate.
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