Introduction to Clustering and its Applications

Dongfeng Li

Instructor: Yikun Zhang

Index

- Introduction
- Materials and Methods
- Code Implementation
- Results
- Discussion
- References

Introduction

Clustering

- In many real world contexts, there aren't clearly defined labels so we won't be able to do classification
- We will need to come up with methods that uncover structure from the (unlabeled) input data X.
- **Clustering** is an automatic process of trying to find related groups within the given dataset.

Input: $x_1, x_2, ..., x_n$

Materials and Methods

First-hand data from hometown powerplant.

Data

1 TIME	PITOPI. 910TL.	[TL9]TIPITOPI. 910TL. [TL	9] TI PITOPI. 910TL. [TL	.9]TIPITOPI. 910TL. [TL	9]TI PITOPI. 910TL. [TL9]	TIPITOPI. 910TL. [TL9]	TIPITOPI. 910TL. [TL9]	TIPITOPI. 910TL. [TL9]	TIPITOPI. 910TL. [TL9]T	I PITOPI. 910TL. [TI	.9]TIPITOPI. 910TL. [TL	9]TIPITOPI. 910TL. [1	<pre>FL9]TLPITOPI. 910TL. [TL'</pre>
2	BurdenOfPlant	PowerOfEngine	TotalAirFlow	TotalCoal	BInduceFanExtend	AInduceFanExtend	AInduceFanCurrent	BInduceFanCurrent	9AborstionExitTemp1	9AborstionExitTe	emp2 9AborstionExitTer	np3 9Desulfurizatio	onEffi9InputAirFlow
3 2019/5/16 0:00	-99.96077 OK	236. 30933 OK	912.93738 OK	97.152702 OK	52.201302 OK	51.619404 OK	160.0752 OK	162.20375 OK	48.62722 OK	48.647926 OK	48.042564 OK	98.972153 OK	1082.8059 OK
4 2019/5/16 0:05	-99.96077 OK	236. 64929 OK	906. 98834 OK	97.122398 OK	52.167515 OK	51.510666 OK	157.11647 OK	158.50661 OK	48.645256 OK	48.67001 OK	48.051273 OK	99.130425 OK	1059.5935 OK
5 2019/5/16 0:10	-99. 96077 OK	236.66893 OK	908.45911 OK	97.3022 OK	52.206203 OK	51.514648 OK	157.24234 OK	157.13161 OK	48.663292 OK	48.692093 OK	48.059986 OK	99.155052 OK	1081.2317 OK
6 2019/5/16 0:15	-99. 96077 OK	235. 4534 OK	910. 43323 OK	97.482002 OK	52.244888 OK	51.520927 OK	157.44067 OK	159.63234 OK	48.681324 OK	48.714172 OK	48.068695 OK	99.179672 OK	1065.9972 OK
7 2019/5/16 0:20	-99. 96077 OK	234.36554 OK	904.2218 OK	96.28569 OK	52.283577 OK	51.52721 OK	156.98769 OK	158.80907 OK	48.69936 OK	48.736256 OK	48.077404 OK	99.2043 OK	1077.6847 OK
8 2019/5/16 0:25	-99.96077 OK	234.68204 OK	903.49042 OK	97.021927 OK	52.322266 OK	51.533489 OK	156.83818 OK	155.97313 OK	48.717392 OK	48.758339 OK	48.086117 OK	99. 228928 OK	1081.1243 OK
9 2019/5/16 0:30	-99. 96077 OK	234.99852 OK	900. 04553 OK	97.758163 OK	52.36095 OK	51.539772 OK	156.71387 OK	156. 46387 OK	48.735428 OK	48.780418 OK	48.094826 OK	99.253548 OK	1083.5823 OK
10 2019/5/16 0:35	-99. 96077 OK	235. 315 OK	909.71777 OK	98. 4944 OK	52.399639 OK	51.546051 OK	156, 58955 OK	157.79459 OK	48.753464 OK	48.802502 OK	48.103539 OK	99.278175 OK	1082.1748 OK
11 2019/5/16 0:40	-99.96077 OK	235.98448 OK	907.79218 OK	99. 230637 OK	52. 438328 OK	51.552334 OK	157.80341 OK	159.76068 OK	48.771496 OK	48.824585 OK	48.112247 OK	99. 302803 OK	1090.0674 OK
12 2019/5/16 0:45	-99.96077 OK	235.12865 OK	918.35657 OK	99.661842 OK	52.529381 OK	51.558613 OK	158.93718 OK	161.37271 OK	48.787025 OK	48. 846664 OK	48.120956 OK	99.327423 OK	1083.0566 OK
13 2019/5/16 0:50	-99.96077 OK	234.17522 OK	917.34961 OK	99.295532 OK	52.627354 OK	51.564896 OK	158.71207 OK	161.25337 OK	48.801228 OK	48.868748 OK	48.129669 OK	99. 352051 OK	1100.569 OK
14 2019/5/16 0:55	-99.96077 OK	236.40817 OK	908. 47229 OK	98.92923 OK	52.725323 OK	51.571175 OK	158, 13989 OK	159.34662 OK	48.815434 OK	48. 890831 OK	48.138378 OK	99.376678 OK	1092. 4124 OK
15 2019/5/16 1:00	-99. 96077 OK	235.90971 OK	902. 5365 OK	98.56292 OK	52.823292 OK	51.577457 OK	157.1711 OK	158.39644 OK	48.829636 OK	48.91291 OK	48.147087 OK	99. 401299 OK	1077.9198 OK
16 2019/5/16 1:05	-99. 96077 OK	235. 37727 OK	899.09155 OK	98.31562 OK	52.921265 OK	51.98439 OK	157.28561 OK	159.36942 OK	48.843838 OK	48. 934994 OK	48.1558 OK	99. 425926 OK	1085.5874 OK
17 2019/5/16 1:10	-99, 96077 OK	235. 11009 OK	908, 47229 OK	99, 100967 OK	53.282002 OK	52.952244 OK	159, 36604 OK	162.34364 OK	48, 85804 OK	48.957077 OK	48, 164509 OK	99, 450554 OK	1082,7114 0K
18 2019/5/16 1:15	-99.96077 OK	234.84291 OK	934.15015 OK	99.886307 OK	54.417202 OK	53.920094 OK	168. 49081 OK	172.20274 OK	48.872242 OK	48.979156 OK	48.173222 OK	99. 475174 OK	1123.0363 OK
19 2019/5/16 1:20	-99, 96077 OK	234, 57573 OK	913, 90466 OK	97.412666 OK	54,999222 OK	54, 79063 OK	165, 86543 OK	167.4613 OK	48, 886444 OK	49.00124 OK	48, 181931 OK	99, 499802 OK	1103, 4413 OK
20 2019/5/16 1:25	-99, 96077 OK	234, 30855 OK	912, 89771 OK	97.931602 OK	53, 657471 OK	53, 812138 OK	159, 56488 OK	160.53636 OK	48,900646 OK	49.023323 OK	48, 19064 OK	99, 524429 OK	1104, 7762 OK
21 2019/5/16 1:30	-99, 96077 OK	234.04137 OK	909, 43958 OK	98, 450539 OK	52.762287 OK	52.833649 OK	160, 45299 OK	161.82588 OK	48, 914848 OK	49, 045403 OK	48,199352 OK	99, 549049 OK	1085, 2242 OK
22 2019/5/16 1:35	-99, 96077 OK	233, 7742 OK	915, 36212 OK	98, 150261 OK	53, 94828 OK	53. 024765 OK	163, 91995 OK	168, 43022 OK	48,92905 OK	49.067486 OK	48, 208061 OK	99, 573677 OK	1111.927 OK
23 2019/5/16 1:40	-99, 96077 OK	233, 5414 OK	908, 4458 OK	96, 96051 OK	54.261009 OK	53. 337887 OK	162,20056 OK	163, 17329 OK	48, 943253 OK	49.089569 OK	48.216774 OK	99.598305 OK	1099.8215 OK
24 2019/5/16 1:45	-99, 96077 OK	233, 3168 OK	905, 98138 OK	96, 83345 OK	53, 734726 OK	53, 096699 OK	158, 59279 OK	159, 87076 OK	48,957455 OK	49, 111649 OK	48, 225483 OK	99.622925 OK	1077.3386 OK
25 2019/5/16 1:50	-99, 96077 OK	233, 26668 OK	899.06506 OK	96, 706398 OK	53, 208443 OK	52.855511 OK	158, 59401 OK	159.38022 OK	48.971657 OK	49, 133732 OK	48, 234192 OK	99.647552 OK	1103.9589 OK
26 2019/5/16 1:55	-99, 96077 OK	233, 21657 OK	900, 54901 OK	96, 579346 OK	52, 682156 OK	52, 614323 OK	158, 59523 OK	158, 20158 OK	48, 985859 OK	49, 155815 OK	48, 242905 OK	99.67218 OK	1078, 8448 OK
27 2019/5/16 2:00	-99, 96077 OK	233, 16644 OK	906, 00787 OK	96, 452286 OK	52,174076 OK	52, 373135 OK	158, 59645 OK	160.09877 OK	49.000061 OK	49, 177895 OK	48, 251614 OK	99, 2183 OK	1090, 8875 OK
28 2019/5/16 2:05	-99, 96077 OK	233, 11633 OK	909.45276 OK	96. 325233 OK	51,969036 OK	52, 131947 OK	158, 59767 OK	161.32814 OK	49.014263 OK	49, 199978 OK	48, 260326 OK	99, 235291 OK	1114, 0399 OK
29 2019/5/16 2:10	-99, 96077 OK	233.06621 OK	905, 50439 OK	97.442825 OK	51,763996 OK	51, 890759 OK	158, 59889 OK	162,06055 OK	49.028469 OK	49, 222061 OK	48, 269035 OK	99, 253098 OK	1090, 9503 OK
30 2019/5/16 2:15	-99, 96077 OK	233, 10202 OK	905, 98138 OK	98. 334267 OK	51, 558956 OK	51.64957 OK	158, 60011 OK	160.75931 OK	49.042671 OK	49.244141 OK	48, 277744 OK	99. 270905 OK	1076.5092 OK
31 2019/5/16 2:20	-99, 96077 OK	233, 41496 OK	906, 96185 OK	97.820923 OK	51,353912 OK	51, 408382 OK	158, 60133 OK	160, 47404 OK	49.056873 OK	49.266224 OK	48, 286457 OK	99, 288704 OK	1100.0784 OK
32 2019/5/16 2:25	-99.96077 OK	233.72791 OK	905 00092 OK	97. 307579 OK	51.148872 OK	51, 167194 OK	158, 40552 OK	160.39709 OK	49.071075 OK	49.288307 OK	48, 295166 OK	99.306511 OK	1070.8879 OK
33 2019/5/16 2:30	-99, 96077 OK	234, 04086 OK	900, 19568 OK	96, 794235 OK	50.943832 OK	50, 926006 OK	158, 0872 OK	160. 22743 OK	49.085278 OK	49. 310387 OK	48, 303879 OK	99, 324318 OK	1079.0116 OK
34 2019/5/16 2:35	-99.96077 OK	234, 35381 OK	900 05878 OK	96. 280891 OK	50.738792 OK	50.684818 OK	157.76889 OK	159.95848 OK	49.09948 OK	49.33247 OK	48.312588 OK	99.342125 OK	1075 2229 OK
35 2019/5/16 2:40	-99, 96077 OK	233, 52443 OK	899, 88654 OK	95. 767548 OK	50, 533752 OK	50, 44363 OK	157.45058 OK	159. 33435 OK	49.113682 OK	49. 354553 OK	48. 321297 OK	99. 359924 OK	1077.1824 OK
36 2019/5/16 2:45	-99.96077 OK	231 8333 OK	904 02039 OK	95.254204 OK	50. 328709 OK	50.202442 OK	157, 13228 OK	158, 31682 OK	49 127884 OK	49.376633.0K	48.330009 OK	99.377731 OK	1066 2306 OK
37 2019/5/16 2:50	-99 96077 OK	229 12521 OK	879 03156 OK	94 048073 OK	50 123669 OK	49 961254 OK	152 69093 OK	153 00484 OK	49 142086 OK	49 398716 OK	48 338718 OK	99 395538 OK	1078 0537 OK
38 2019/5/16 2:55	-99 96077 OK	228 5052 OK	883 72192 OK	94, 431305 OK	50 499115 OK	50 364414 OK	151 80992 OK	153 00789 OK	49 156288 OK	49 420799 OK	48.347431 OK	99 413345 OK	1071 2308 OK
39 2019/5/16 3:00	-99 96077 OK	227 88519 OK	878 28076 OK	94 446594 OK	51 082069 OK	51 001881 OK	152 24785 OK	153,7235 OK	49 17049 OK	49 442879 OK	48 35614 OK	99 431145 OK	1064 782 OK
40 2019/5/16 3:05	-99 96077 OK	227 68805 OK	884 70239 OK	93 350403 OK	51 66502 OK	51 639347 OK	152 94183 OK	154 30724 OK	49 184692 OK	49 450676 OK	48 364849 OK	99 448952 OK	1055 6884 OK
41 2019/5/16 3:10	-99 96077 OK	227 82768 OK	886 42487 OK	95 387610 OK	52 247071 OK	52 276817 OK	153 79955 OK	154 87686 OK	40 108805 OK	40 452015 OK	48 373562 OK	99 466759 OK	1054 2303 08
42 2019/5/16 3:15	-99 96077 OK	227 789 OK	907 49182 OK	97 657578 OK	52 683952 OK	52 914284 OK	157 45749 OK	159 58978 OK	49 213097 OK	49 455154 OK	48 382271 OK	99 484566 OK	1074 145 OK
43 2010/5/16 3:20	-99 96077 OK	227 50406 OK	884 23602 OK	95.660812 OK	51 746520 OK	52. 014204 OK	153 66884 OK	155 63350 OK	49 227303 0K	40 457304 OK	48 300084 OK	00.502373 OK	1076 3883 OK
A4 2010/5/16 3:25	-00 06077 OK	227 42073 OK	977 20594 OK	04 607052 OK	50 800105 OK	51.047447 OK	151 73972 OK	153 47005 OK	40.241505 OK	40, 459637, 0K	49, 300603 0K	00 520172 OK	1000 750 OK
45 2010/5/16 2:20	-00 06077 04	227, 70638 OF	878 70300 0V	03 10081 OF	49.871685.0K	50.087402 OK	140 20523 OK	140 46278 OK	49.255707 OK	40.461876 OF	48 408401 0V	00 537070 OF	1067 5957 OF
AC 2015/3/10 3:30	55. 50077 UK	227. 70038 OK	010. 19309 UK	55. 10961 UN	45.011000 00	10.001402 OK	145. 25020 OK	145. 40210 UK	45.200101 UK	45. 401070 UK	40. 400401 0K	55. 331919 UK	1001.0937 OK
$K \langle \rangle \rangle = 5$	dd + bb							1.0					× 1

-Full record on 05/16/2019. -Size of 4608*79.

Materials and Methods Data

Huangtai power plant desulfurization process

Figure 6. The framework of system

Research object is Unit 9 of Huangtai with double absorption towers.

The system includes: SO₂ absorption sys, flue-gas sys, absorbent preparation sys, gypsum treatment sys, processed water sys, accident slurry sys, etc

Methods: Variable Selection

Variable selection by variance

Why?

- Too many data points, some of which do not provide useful information.

- High dimensions bring curse of dimensionality.

- Perform clustering on scattered data instead of too much concentrated data.

Methods: Mean-shift Clustering

Density-based clustering

Weighted mean:

$$M_W = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

Using Gaussian weight function:

$$w(d) = e^{-\frac{d}{2\sigma^2}}$$

d is distance from the current point toward any other points.

 σ is the parameter to adjust for how fast the weight decreases with the increasing of distance

Methods: Mean-shift Clustering

KDE is kind of similar to PDF

Then by gradient descent we could get cluster updating

Density gradient estimator:

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right).$$

Kernel density estimator(KDE):

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

n is number of data, h is bandwidth, d is dimension of data, K is the kernel function(we use Gaussian kernel).

Methods: Mean-shift Clustering

• Selection of bandwidth Applying Silverman's rule of thumb to self-select bandwidth since we are using Gaussian Kernel

$$h = (\frac{4}{d+2})^{\frac{1}{d+4}} \cdot n^{\frac{-1}{d+4}} \cdot \sum_{0}^{n} \frac{\sigma}{n}$$

Methods: K-means Clustering

From STAT 416 I learned about K-means clustering:

Define the Score for assigning a point to a cluster is $Score(x_i, \mu_j) = dist(x_i, \mu_j)$

Lower score => Better Clustering.

k-means Algorithm at a glance Step 0: Initialize cluster centers

Repeat until convergence:

Step 1: Assign each example to its closest cluster centroid

Step 2: Update the centroids to be the average of all the points

assigned to that cluster

Step 0:

Start by choosing the initial cluster centroids

- A common default choice is to choose centroids at random
- Will see later that there are smarter ways of initializing

Step 1:

sign each example to its closest cluster centroid $z_i \leftarrow \operatorname{argmin} ||u_i - z_i||^2$

$$z_i \leftarrow \underset{j \in [k]}{\operatorname{argmin}} \left| \left| \mu_j - x_i \right| \right|$$

Step 2:

Consider the centroids to be the mean of all the points assigned to that cluster.

$$u_j \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$$

Computes center of mass for cluster!

K-means++: Smart Initialization

Omeans++ does a slightly smarter random initialization

- 1. Choose first cluster μ_1 from the data uniformly at random
- 2. For the current set of centroids (starting with just μ_1), compute the distance between each datapoint and its closest centroid
- 3. Choose a new centroid from the remaining data points with probability of x_i being chosen proportional to $d(x_i)^2$
- 4. Repeat 2 and 3 until we have selected k centroids

Methods: Multidimensional Scaling(MDS)

Multidimensional Scaling(MDS) gives a deduction in dimensionality so that we could have a better visualization while still keep the distance or pattern somehow.

We use Euclidean distance and metric MDS which preserve the pairwise distance here.

$$l(p,q) = \sqrt[2]{(q_1-p_1)^2 + \ldots + (q_n-p_n)^2}$$

A possible mapping of points from 3D to 2D and 1D. The mapping is not optimized.

Code Implementation

def MS(mesh_0, data, h=None, eps=1e-7, max_iter=1000, wt=None):

Mean Shift Algorithm with the Gaussian kernel.

Parameters

mesh_0: a (m,d)-array The coordinates of m initial points in the d-dim Euclidean space.

data: a (n,d)-array The coordinates of n data sample points in the d-dim Euclidean space.

h: float

The bandwidth parameter. (Default: h=None. Then the Silverman's rule of thumb is applied. See Chen et al.(2016) for details.)

eps: float The precision parameter.

max_iter: int The maximum number of iterations for the SCMS algorithm on each initial point.

wt: (n,)-array

The weights of kernel density contributions for n random sample points. (Default: wt=None, that is, each data point has an equal weight "1/n".)

Return

MS_path: (m,d,T)-array The entire iterative MS sequence for each initial point.

n = data.shape[0] ## Number of data points

d = data.shape[1] ## Dimension of the data

if h is None: # Apply Silverman's rule of thumb to select the bandwidth parameter

(Only works for Gaussian kernel)
h = (4/(d+2))**(1/(d+4))*(n**(-1/(d+4)))*np.mean(np.std(data, axis=8))
print("The current bandwidth is "+ str(h) + ".\n")

MS_path = np.zeros((mesh_0.shape[0], d, max_iter)) ## Create a vector indicating the convergent status of every mesh point conv_sign = np.zeros((mesh_0.shape[0],)) if wt is None: wt = np.ones((n,))else: $wt = n^*wt$ MS path[:,:,0] = mesh 0 for t in range(1, max_iter): if all(conv sign == 1): print('The MS algorithm converges in ' + str(t-1) + 'steps!') break for i in range(mesh 0.shape[0]): if conv sign[i] == 0: x pt = MS path[i,:,t-1] ker_w = wt*np.exp(-np.sum(((x_pt-data)/h)**2, axis=1)/2) # Mean shift update x_new = np.sum(data*ker_w.reshape(n,1), axis=0) / np.sum(ker_w) if LA.norm(x_pt - x_new) < eps: $conv_sign[i] = 1$ MS_path[i,:,t] = x_new else: MS_path[i,:,t] = MS_path[i,:,t-1]

if t >= max_iter-1: print('The MS algorithm reaches the maximum number of iterations,'\ +str(max_iter)*', and has not yet converged.') return MS path[::::t]

Variable selection: sklearn.feature selection.VarianceThreshold

In [7]: def smart_initialize(data, k, seed=None):

Use k-means++ to initialize a good set of centroids

if seed is not None: # useful for obtaining consistent results
 np.random.seed(seed)

centroids = np.zeros((k, data.shape[1]))

Randomly choose the first centroid. # Since we have no prior knowledge, choose uniformly at random idx = np.random.randint(data.shape[0]) centroids[0] = data[idx,:]#.toarray()

Compute distances from the first centroid chosen to all the other data points
distances = pairwise distances(data, centroids[0:1], metric='euclidean').flatten()

for i in range(1, k):

Choose the next centroid randomly, so that the probability for each data point to be chosen # is directly proportional to its squared distance from the nearest centroid. # Roughtly speaking, a new centroid should be as far as from ohter centroids as possible. idx = np.random.choice(data.shape[0], 1, p=distances/sum(distances))

centroids[i] = data[idx,:]#.toarray()

Now compute distances from the centroids to all data points
distances = np.min(pairwise_distances(data, centroids[0:i+1], metric='euclidean'),axis=1)

return centroids

Code Implementation: Plotting

import plotly.express as px

```
# Create a scatter plot
fig = px.scatter(cated, x='x', y='y', opacity=1, color="dataset")
```

```
# Change chart background color
fig.update layout(dict(plot bgcolor = 'white'))
```

Update axes Lines

Set figure title

fig.update_layout(title_text="MDS Transformation")

In [59]: from mpl_toolkits.mplot3d import Axes3D import matplot1ib as mpl import matplotlib.pyplot as plt import seaborn as sns

dff = pd.DataFrame(transformed, columns = labels)
dfm = pd.DataFrame(oo[0], columns = labels)
dfk = pd.DataFrame(mm, columns = labels)

concatenated = pd.concat([dff.assign(dataset='set1'), dfm.assign(dataset='set2'), dfk.assign(dataset='set3')], ignore_index = Tru

'''fig = pp.fig
fig.subplots_adjust(top=0.93, wspace=0.3)
t = fig.suptitle('Test Plots', fontsize=14)'''

fig.show()

Results: by MDS

MDS Transformation

X

Discussion on Performance

• Time

• Who's better?

Performance: Time Complexity

Time of MS:240.09044551849365 Time of K-means:0.018936634063720703 Mean-shift algorithm:

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right).$$

Time complexity of $O(tn^2d)$

For high dimension it is time-consuming.

K-means algorithm: $\underset{\mathbf{s}}{\arg\min} \sum_{i=1}^{\kappa} \sum_{\mathbf{x}_j \in S_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$

is a NP-hard problem that has complexity *O*(*tnd*)

where t is iteration times, k is number of centroids, n is number of data and d is dimension.

Performance: Who's better?

 Calinski-Harabasz Index(Variance Ratio Criterion)

Performance: Who's better?

BUT Generally

- Pros of mean shift(compare to k-means):
 - O Mean Shift is quite better at clustering as compared to K Means, mainly due to the fact that we don't need to specify the value of 'K', i.e. the number of clusters.
 - O Output of mean shift is not strongly dependent on initialization
 - O The algorithm only takes one input, the bandwidth of the window.
 - O Has smaller limitation to shape of the data.
- Cons of mean shift:
 - O Mean Shift performs a lot of steps, so it can be computationally expensive, with a time complexity of $O(n^2)$ while k-means is O(n)
 - O The selection of the bandwidth itself can be nontrivial, although we introduce the silverman's rule.
 - O The performance on high dimension would not be good since for MISE we have:

$$\int \mathbb{E}\left(\left(\widehat{p}_{n,\mathsf{opt}}(x) - p(x)\right)^2\right) dx = \inf_{h>0} \int \mathbb{E}\left(\left(\widehat{p}_n(x) - p(x)\right)^2\right) dx = O\left(n^{-\frac{2}{d+4}}\right)$$

Further Discussion

- Silverman's rule performs well on normal density. Otherwise might be bad-performance.
- Running time for Mean-shift is too long.
 Introducing parallel programing to be faster.
- Do not have a clear physical explanation of found: what do clusters of data patterns do?
- Performance measurement is not solved.
 Maybe could try Davies-Bouldin Index for nonconvex clusters.
- Do not have ground-truth labels on data set. Introducing labels would be better for quantitative measurement.

More

Index

Questions?

- Introduction
- Materials and Methods(data and methods)
- Code Implementation
- Results(graphs by pairgrid and MDS)
- Discussion(Performance)
- References

References

Sheth, Jash. "Mean Shift Clustering Algorithm." OpenGenus IQ: Computing Expertise & amp; Legacy, OpenGenus IQ: Computing Expertise & amp; Legacy, 6 Apr. 2019, https://iq.opengenus.org/mean-shift-clustering-algorithm/.

6.869 Advances in Computer Vision: Learning and Interfaces, https://courses.csail.mit.edu/6.869/.

Yufeng. "Understanding Mean Shift Clustering and Implementation with Python." Medium, Towards Data Science, 22 Feb. 2022, https://towardsdatascience.com/understanding-mean-shift-clustering-and-implementation-with-python-6d5809a2ac40.

Zuccarelli, Eugenio. "Performance Metrics in Machine Learning-Part 3: Clustering." Medium, Towards Data Science, 31 Jan. 2021, https://towardsdatascience.com/performance-metrics-in-machine-learning-part-3-clustering-d69550662dc6.

Landup, David. "Guide to Multidimensional Scaling in Python with Scikit-Learn." Stack Abuse, Stack Abuse, 21 July 2022, https://stackabuse.com/guide-to-multidimensional-scaling-in-python-with-scikit-learn/.

Chen, Yen-Chi. "A Tutorial on Kernel Density Estimation and Recent Advances." ArXiv.org, 12 Sept. 2017, https://arxiv.org/abs/1704.03924.