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Motivation

* (Ideal Case) Make as much money
during gambling as possible

No opportunity cost, no loss of
money

Probability of winning different

amount of money from different

gamble machines vary a lot
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What is Stochastic Bandit?

e Essence: A set of
probability distributions
("bandit arms”)

e Actions and Rewards

« Ex. Bernoulli Bandit: the
simplest case




Regret of Stochastic Bandit

« Deficiencies between optimal and practical strategy

 Wantitto be as small as possible (mean reward as large as possible)

« Suboptimality Gap n
° _ X
Sum up by rounds Rn = nu* — E[ E Xt]
t=1

e Sum up by actions?

(n : total number of rounds, u*: largest reward of the “optimal” arm during each round,

X;: actual reward during each round)



Policy of Stochastic Bandit: Explore-

Then-Commit (ETC) Algorithm

Explore first (play with each of the k
rounds for m times)

Commit next (play with the arm with| 1 Input m.
2: In round ¢ choose action

the largest mean reward only) s oA B T £t < mk
At _ {( mo )+ 5 1 S MRS

Regret: subject to linear growth argmax; ji;(mk), t>mk.

(ties in the argmax are broken arbitrarily)

EX' Randomly guess makes |Inear Algorithm 1: Explore-then-commit.

regret occur

(m : rounds played by each arm during “exploring”, k: number of arms,
u;(n) : actual mean reward of arm i after n rounds)



Policy of Stochastic Bandit: Upper

Confidence Bound (UCB) Algorithm

Define a “"UCB” index for each arm
UCB;(t —1,0)
Play the arm with the largest "UCB”

Update this arm’s “UCB" based on
generated rewards

Regret: subject to sublinear growth

Bounded by “Good Events” (true
value inside Confidence Interval)

Best for minimizing the overall regret

(t : current tth round, 8: boundary of Confidence Interval,
T;(n) : total number of rounds (Random Variable)
u;(n) : actual mean reward of arm i after n rounds)
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Policy of Stochastic Bandit: Elimination

Algorithm

Each round represents an updated
environment with varied number of
arms

Eliminate the arms whose mean reward
has “too large” difference with the
optimal arm

Regret: stick to playing with one arm
and calculate the accumulated regret

Best for identifying the best arm

(L: current lth phase, 27%: defined index of Confidence
Interval u;;: actual mean reward of arm i in phase 1)

1: Input: k and sequence (myg);
2: 441 = {1,2 . k}

3: for £=1,2,3,... do

4: Choose each arm i € Ay exactly my; times

5: Let ji; » be the average reward for arm 2 from this phase only
6: Update active set:

Apyg = {'i D fie 2% > max ,L]j‘[}
JEA,.

7: end for
Algorithm 2: Phased elimination for finit med bandits
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Policy of Stochastic Bandit: Thompson

Sampling Algorithm

« Each arm’s mean is a probability
distribution function (pdf), instead of a
fixed number

» Extract samples from each arm, which
infers another pdf

* P("bestarm”) RV = P("sample arm”)

« These pdf are used to estimate the true
pdf of each arm’s mean

« Regret: follow Bayesian setting

* Application: Amazon front-page
algorithm recommendation



BernoulliBandit:

( means, K, round):
.Means = means
K =K

.round

round

pull( a):

Implementationin
Python (of
Bernoulli Bandits)

realisation = bernoulli.rvs( .means[0:a+1])/(a+1)

realisation[0]

regret( realisation, rounds):

u_opt = ( .means) /

rounds)

regret = .round * u_opt - .expected_value(realisation

regret

expected_value( values, weights):

values = np.asarray(values)
weights = np.asarray(weights)
(Logsumexp(values) * logsumexp(weights)).sum() / logsumexp(weights).sum()

1 result: arm 2 generates 0
2 's result: arm 2 generates 0
3 's result: arm 1 generates 1
4 's result: arm 1 generates 0
5 's result: arm 1 generates 1
6 's result: arm 2 generates 0
7 's result: arm 1 generates 0
8 's result: arm 2 generates 0
round 9 's result: arm 2 generates 1

round 10 's result: arm 1 generates 0



essesse,
. Se.

Implementation in Python k-
(of UCB Algorithm)

C:!Users!huang!PycharmProjects!venv!Scripts!python.e

in the 1 th round, the 9 th arm is being played

Berkely(K, delta, mean):

previous_round =

in the 2 th round, the 1 th arm is being played

in the 3 th round, the 5 th arm is being played round -

in the 4 th round, the 17 th arm is being played UCB = []

in the 5 th round, the 11 th arm is being played o~

in the 6 th round, the 13 th arm is being played tjjne = []

in the 7 th round, the 15 th arm is being played

in the 8 th round, the 16 th arm is being played - []

in the 9 th round, the 18 th arm is being played - [ ] x K

in the 10 th round, the 20 th arm is being played

1 range(0, K):

in the 11 th round, the 4 th arm is being played o

T G PR TR i s L LY et time.append(math.sqrt(2 * math.log(1l / delta) / previous_round))
in the 13 th round, the 2 th arm is being played .

in the 14 th round, the 6 th arm is being played J range ( K) :

[0, 0,1, 1,0,1,0, 0,0 1,1, 1, 1, 1]

UCB.append(mean[j] + time[j])

—



References

Lattimore, T., & Szepesvari Csaba. (2020). Bandit Algorithms. Cambridge University Press.

Kevin Jamieson. (2021). Some Notes on Multi-armed Bandits. University of Washington.



Any

Questions?




« Difference between sample mean and

empirical mean

Theory of

P(p>p+e) and P(a<p—c).

Stochastic Bandit: [kt
Tail Probabilities

ne? ne?

> < = h<p—eg) < =
P(.M.LH‘E)QXP( 202) and P (i <p €)exp( 202),

« sample mean and empirical mean differs

7N by a small amount
/ | H
/ \ 2
/ n< iy 2 osl/d) (5.6)
\ n
__f . "11 Symmetrically, it also follows that with probability at least 1 — 4,
i )
y: . o [20%log(1/0)
y \'\ w> — (5.7)




Special case: Follow-the-leader




Some Graphs

Fig 6.1 Reproduction
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Figure 6.1 The expected regret of ETC and the upper bound in Eq. (6.6).
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Some Graphs

. L]
RLTTP PP

100 — ETC (m = 25)
— ETC (m = 50)

s 80 ETC (m =T75)
@ — ETC (m = 100)
,; 60 | - | ==ETC (optimal m)
Q .
240+ .
&

20

0 02 04 06 08 1
A

Figure 7.1 Experiment showing universality of UCB relative to fixed instances of ETC



