Introduction to Adaptative Experimental Design

Mentor: Zhaoqi Li Mentee: Zilin Huang SPA Fall 2022 University of Washington

Motivation

- (Ideal Case) Make as much money during gambling as possible
- No opportunity cost, no loss of money
- Probability of winning different amount of money from different gamble machines vary a lot

What is Stochastic Bandit?

- Essence: A set of probability distributions ("bandit arms")
- Actions and Rewards
- Ex. Bernoulli Bandit: the simplest case

Regret of Stochastic Bandit

- Deficiencies between optimal and practical strategy
- Want it to be as small as possible (mean reward as large as possible)
- Suboptimality Gap
- Sum up by rounds
- Sum up by actions?

$$R_n = nu^* - E\left[\sum_{t=1}^n X_t\right]$$

(*n* : total number of rounds, u^* : largest reward of the "optimal" arm during each round, X_t : actual reward during each round)

Policy of Stochastic Bandit: Explore-Then-Commit (ETC) Algorithm

- Explore first (play with each of the k rounds for m times)
- Commit next (play with the arm with the largest mean reward only)
- Regret: subject to linear growth
- Ex. Randomly guess makes linear regret occur

 $(m: rounds played by each arm during "exploring", k: number of arms, <math>u_i(n):$ actual mean reward of arm i after n rounds)

1: Input *m*. 2: In round *t* choose action $A_t = \begin{cases} (t \mod k) + 1, & \text{if } t \le mk; \\ \operatorname{argmax}_i \hat{\mu}_i(mk), & t > mk. \end{cases}$

(ties in the argmax are broken arbitrarily)

Algorithm 1: Explore-then-commit.

Policy of Stochastic Bandit: Upper Confidence Bound (UCB) Algorithm

- Define a "UCB" index for each arm
- Play the arm with the largest "UCB"
- Update this arm's "UCB" based on generated rewards
- Regret: subject to sublinear growth
- Bounded by "Good Events" (true value inside Confidence Interval)
- Best for minimizing the overall regret

(t : current tth round, δ : boundary of Confidence Interval, $T_i(n)$: total number of rounds (Random Variable) $u_i(n)$: actual mean reward of arm i after n rounds)

$$\mathrm{UCB}_i(t-1,\delta) = \begin{cases} \infty & \text{if } T_i(t-1) = 0\\ \hat{\mu}_i(t-1) + \sqrt{\frac{2\log(1/\delta)}{T_i(t-1)}} & \text{otherwise} . \end{cases}$$

Policy of Stochastic Bandit: Elimination Algorithm

- Each round represents an updated environment with varied number of arms
- Eliminate the arms whose mean reward has "too large" difference with the optimal arm
- Regret: stick to playing with one arm and calculate the accumulated regret
- Best for identifying the best arm (*l* : current *l*th phase, 2^{-l} : defined index of Confidence Interval $u_{i,l}$: actual mean reward of arm *i* in phase *l*)

2: $A_1 = \{1, 2, \dots, k\}$ 3: for $\ell = 1, 2, 3, \ldots$ do Choose each arm $i \in A_{\ell}$ exactly m_{ℓ} times Let $\hat{\mu}_{i,\ell}$ be the average reward for arm *i* from this phase only Update active set: $A_{\ell+1} = \left\{ i : \hat{\mu}_{i,\ell} + 2^{-\ell} \ge \max_{i \in A} \hat{\mu}_{j,\ell} \right\}$ 7: end for

Algorithm 2: Phased elimination for finite-armed bandits

Phase | Phase

Policy of Stochastic Bandit: Thompson Sampling Algorithm

- Each arm's mean is a probability distribution function (pdf), instead of a fixed number
- Extract samples from each arm, which infers another pdf
- P("best arm") RV = P("sample arm")
- These pdf are used to estimate the true pdf of each arm's mean
- Regret: follow Bayesian setting
- Application: Amazon front-page algorithm recommendation

Implementation in Python (of Bernoulli Bandits)

def __int__(self, means, K, round):
 self.means = means
 self.K = K
 self.round = round

def pull(self, a): # Pull Once Each Time: realisation = bernoulli.rvs(sum(self.means[0:a+1])/(a+1), size=1) return realisation[0]

def regret(self, realisation, rounds):
 # Optimal Rewards:
 u_opt = sum(self.means) / self.K
 # Simulate the Learner's Gained Rewards:
 regret = self.round * u_opt - self.expected_value(realisation, rounds)
 return regret

def expected_value(self, values, weights):
 values = np.asarray(values)
 weights = np.asarray(weights)
 return (logsumexp(values) * logsumexp(weights)).sum() / logsumexp(weights).sum()

round 1 's result: arm 2 generates 0 round 2 's result: arm 2 generates 0 round 3 's result: arm 1 generates 1 round 4 's result: arm 1 generates 0 round 5 's result: arm 1 generates 1 round 6 's result: arm 2 generates 0 round 7 's result: arm 1 generates 0 round 8 's result: arm 2 generates 0 round 9 's result: arm 2 generates 0 round 9 's result: arm 1 generates 0

Implementation in Python (of UCB Algorithm)

in the 1 th round, the 9 th arm is being played in the 2 th round, the 1 th arm is being played in the 3 th round, the 5 th arm is being played in the 4 th round, the 17 th arm is being played in the 5 th round, the 11 th arm is being played in the 6 th round, the 13 th arm is being played in the 7 th round, the 15 th arm is being played in the 8 th round, the 16 th arm is being played in the 9 th round, the 18 th arm is being played in the 10 th round, the 20 th arm is being played in the 11 th round, the 4 th arm is being played in the 12 th round, the 12 th arm is being played in the 13 th round, the 2 th arm is being played in the 14 th round, the 6 th arm is being played [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1]

```
def Berkely(K, delta, mean):
C:\Users\huang\PycharmProjects\venv\Scripts\python.e
                                            previous_round = 10
                                            round = 150
                                            UCB = []
                                            time = []
                                            for_regret = []
                                            playtime = [0] * K
                                            for i in range(0, K):
                                                time.append(math.sqrt(2 * math.log(1 / delta) / previous_round))
                                            for j in range(0, K):
                                                UCB.append(mean[j] + time[j])
```

References

Lattimore, T., & Szepesvári Csaba. (2020). Bandit Algorithms. Cambridge University Press. Kevin Jamieson. (2021). Some Notes on Multi-armed Bandits. University of Washington.

Thank you for watching

Any Questions?

Theory of Stochastic Bandit: Tail Probabilities

Difference between <u>sample mean</u> and <u>empirical mean</u>

 $\mathbb{P}(\hat{\mu} \ge \mu + \varepsilon)$ and $\mathbb{P}(\hat{\mu} \le \mu - \varepsilon)$.

 Bounded upon Subgaussian environment

$$\mathbb{P}\left(\hat{\mu} \geq \mu + \varepsilon\right) \leq \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right) \quad and \quad \mathbb{P}\left(\hat{\mu} \leq \mu - \varepsilon\right) \leq \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right) \,,$$

 sample mean and empirical mean differs by a small amount

$$\leq \hat{\mu} + \sqrt{\frac{2\sigma^2 \log(1/\delta)}{n}} \,. \tag{5.6}$$

Symmetrically, it also follows that with probability at least $1 - \delta$,

 μ

$$\mu \ge \hat{\mu} - \sqrt{\frac{2\sigma^2 \log(1/\delta)}{n}} \,. \tag{5.7}$$

Special case: Follow-the-leader

Some Graphs

Figure 6.1 The expected regret of ETC and the upper bound in Eq. (6.6).

Some Graphs

Figure 7.1 Experiment showing universality of UCB relative to fixed instances of ETC

