
Hello everyone, my name is Zilin Huang and I am a senior in ACMS. I am glad

that I was chosen as one of the participants for this quarter’s SPA Directed Reading

Program, under Zhaoqi Li’s guidance. Our project focuses on adaptive experimental

design, that is, designing experiments and adapting its procedures along with the

change of observed data. One particular instance is multi-armed bandits.

Let’s focus on the case of gambling. Suppose there are a bunch of slot machines

in front of us, and in the very ideal case, assume no cost occurs when playing with

these machines, and we would only win or earn no dollars during each round. Under

this setting, we need to decide the best strategy in order to win the largest amount of

dollars possible. What would these strategies look like? Now, if we take a statistical

approach, and simplify the mechanism behind slot machines as a bunch of probability

distributions of dollars, we can find a way to really estimate the total dollars we could

earn, and this idea is called “stochastic bandit”. The main objective of it is that the player

conducts the action of playing one of the arms during each round, and try to maximize

the cumulative rewards after some rounds. For example, the simplest of this “stochastic

bandit” is “Bernoulli Bandit”, in which each arm follows the Bernoulli distribution, and

generates either one or zero dollars only in each round.

Another term related to stochastic bandit is Regret, the difference of the mean

reward (or just deficiencies here) between the optimal strategy possible and the

practical strategy we conduct. We want the regret to be as small as possible, which

implies the reward will be as large as possible, and we mostly calculate regret by

summing up by the number of rounds, as shown in this formula. The idea of regret also



depends on the concept of “suboptimality gap”, which is difference of mean reward

between an arbitrary arm and optimal arm.

The first and most basic strategy is called the Explore-then-Commit (or ETC)

Algorithm. Assume we play each arm for some times, and record their mean rewards

respectively. During the commit stage, we play with the single arm with largest mean

rewards calculated, until the game itself ends. Although it is very straightforward to

implement such an algorithm, its deficiency is large as well: The regret may grow

linearly, since we can not guarantee that this chosen arm will still generate the optimal

reward as we would expect. So, think about the case when we just randomly play any

arm we like, and do not care how large the regret should be. That is quite similar to the

case when the ETC Algorithm functions not so well.

Another useful and mostly-discussed algorithm is called Upper Confidence

Bound, or UCB Algorithm. The basic idea is that after the “explore” stage, similar to the

previous algorithm, we still compute the mean reward of each arm. In this case, we also

define the index of “UCB” for each of these arms according to this formula here. After

this process, in each round, we would play the single arm with the largest “UCB”, and

then update its “UCB” value. Fortunately, the UCB Algorithm will usually generate

sublinear regret (like the function of square root of x), since it will implicitly not play with

arms with very low UCB, and therefore very high regret as time goes, and therefore

largely reducing the overall regret. Unfortunately, the proof of formula for UCB’s regret is

quite complicated, and we skip it for now. The only point we should notice here is that

this whole algorithm is set under the “good event”, namely one arm’s actual sample

mean does not differ from its expected mean a lot with a very high confidence.



Another interesting algorithm is called the Elimination Algorithm. Its rule is

somehow different, in that in each phase (no longer rounds here), we play with each

arm for some rounds, still computing their mean rewards, and ELIMINATE the arms

whose mean rewards are way more smaller than that of the optimal arm. By eliminating,

it means that when going to the next phase, we will not play with these arms any more.

This difference is always measured by manually letting the two arms's Confidence

Interval not intersect with each other, and thus comes the meaning of “too large” the

difference. When there is only one arm remaining in the last, we will then begin

calculating the regret for this algorithm.

The last algorithm I would like to introduce is Thompson Sampling Algorithm. Its

idea is quite unique from others, in that the mean reward of each arm is no longer a

number, but another probability distribution function to be estimated. (OPTIONAL) For

the initial stage, we still extract some samples from each of the arms, which is then

composed to another pdf. One thing to notice is that this pdf is the estimation of the

actual pdf representing the actual mean of that arm, and after the initial stage in each

round, we play with the arm containing the highest mean of the pdf of the mean reward.

Its core idea lies in the Bayesian formula, and the formula for regret follows exactly this

theorem. (OPTIONAL ENDS) One major application of Thompson Sampling is

Amazon’s front-page recommendation, in which the reward represents users’ click of

each of the potential categories, like ads for clothes, for books, for video games, and so

on. The engineers will design algorithms that learn such actions for each customer, and

tend to recommend similar pages for them in their future usage of Amazon.



That is all I would like to show for our project in Adaptive Experimental Design,

thank you for your listening and you are welcome to ask any questions.


