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What is Sampling?

●  the selection of a subset (a statistical sample) of individuals from within a statistical population to 

estimate characteristics of the whole population

● Keywords: selection, population, estimation



Importance Sampling

● Approximate E[f] by drawing samples from a“proposal distribution” q, and correcting appropriately 

by a weighting ratio.

● Suppose dealing with p(z) is harder, i.e., we can’t even evaluate p(z) but can only do so up to 

proportionality constant, and only p ̃(z) can be evaluated. We can still apply importance sampling by 

applying the importance weight.



Rejection Sampling

● Need to setup a proposal function q(z) and M, so that Mq(z) ≥ p ̃(z), for all z.

● Simulate  U∼Unif(0,1) and candidate  X∼g from the candidate density.

● Use U<p ̃(z)/ Mq(z) to test if reject the candidate X or not.



Bayesian inference

● A method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more 

evidence or information becomes available.

● P(θ|D)=(P(D|θ) X P(θ))/P(D)

● Here, P(θ) is the prior, P(D|θ) is the likelihood of observing our result given our distribution for θ. P(D) is the 

evidence. P(θ|D) is the posterior belief of our parameters after observing the evidence i.e the number of heads .

● Use P(θ|D) to estimate the probability of θ given the data.



Maximum likelihood estimation

● A method of estimating the parameters of a probability distribution by maximizing the likelihood 

function, so that under the assumed statistical model the observed data is most probable. 

● S          s    sdfsdfsdfsdfsdfs  where θ is the estimating parameter, y is the given data, and Ln is the 

likelihood function.

● In practice, it is often convenient to work with log likelihood.
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Introduction to the problem

● In practice, we often observe many zeros than we would predict from a Poisson model. 

● We will define a ZIP model and then find some unknown parameters of the ZIP model using a 

Bayesian approach. 

● We will use the sampling methods (importance sampling and rejection sampling) to answer 

questions related to the parameters of interest



Introduction to dataset

● Given the dataset of fish count, we want to model how many fish are being caught by fishermen at 

a state park. 

● Some visitors do not fish, but there is no data on whether a person fished or not. 

● Some visitors who did fish did not catch any fish so there are excess zeros in the data because of 

the people that did not fish. 



Head of data

In this project, we only consider modeling the count variable. Here is the table and summary of the 
count variable.



Model expression

We are going to denote the count variable data as y
1

, . . . , y
n
 Assume that y

1
, . . . , y

n
 are independent and 

identically distributed given 0 < π < 1 and λ > 0 according to a zero-inflated Poisson sampling model:



log likelihood function for the parameters



MLE for the likelihood function

Use the optim function in R:

𝞹
MLE

 = 0.5677436

ƛ
MLE

 = 7.6252130

Notice that the ƛ calculated here is highly influenced by a outlier (149), thus it is biased. We want to 

introduce Bayesian inference to eliminate the influence of outliers by adding prior to the model later.



Estimate the probability that a new fisher catches no fish using the 
MLE of the parameters:

= 0.5679546

Assuming that the new fisher catches at least one fish, estimate the 

probability that a fisher catches exactly one fish:

=0.003722854



Bayesian analysis

Suppose the prior distribution be: π ∼ Beta(α, β),  λ ∼ Gamma(shape = θ, rate = κ), and assume 

independence. Assume that α = β = κ = 1 and θ = 4.

Then the log posterior of π, λ up to a proportionality constant shows as below:

The MAP estimate:



Determine the posterior mean of π and λ using 
importance sampling
 proposal distribution: π,λ ~multinormal( mean = 0.5,4 , sd matrix = (0.1,0;0,0.5))

Generate 10000 pair of data from the proposal distribution, calculate the qtilda=dmvnorm(param)

Then calculate the rtilda =posterior/qtilda= exp(logposterior-log(qtilda))

λ.mean = ∑(λ*rtilda)/∑rtilda

π.mean = ∑(π*rtilda)/∑rtilda



Rejection sampling

Use proposal function π~beta(2,2), and  λ~gamma(8,2). Let π*λ be g(x) and exp(logposterior) be f(x). Use 

optim function to find M is around 10000.

Simulate 10000 candidates  X∼g from the candidate density.

Simulate  U∼Unif(0,1).

If

then “accept” the candidate  X. Otherwise, “reject”  X.



Comparison on statistics

We can see that the result of using importance sampling and rejection sampling does not show 

significant differences. They have an overlapped interval of CI for both π and λ. The rejection sampling 

has a larger standard error because the proposal function can still be improved. 

π λ

MLE 0.5677436 7.6252130

MAP 0.5625373 4.3798186

Importance sampling 0.5242635 4.852539

Rejection sampling 0.5517844 4.875251



Visualization of samples using Rejection sampling

The  red horizontal 

line indicates the MLE 

estimator for the 

parameters.



Using the posterior vs naive MLE

Estimate the probability 
that a new fisher catches 
no fish using the MLE of 

the parameters

Assuming that the new fisher 
catches at least one fish, estimate 
the probability that a fisher catches 

exactly one fish

MLE parameter 0.5679546 0.003722854

Importance sampling 0.5355273 0.07013013

Rejection sampling 0.5227386 0.05840689 



Summary

● In the case study, I used knowledge about Bayes Interface, Maximum likelihood, Importance 

sampling, and Rejection sampling.

● The result of case study show that these sampling techniques are useful in estimating the 

expectation of unknown distribution.

● Any questions?


