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Motivation

e Some subset of patients may respond better to one treatment
as opposed to another

e How do we find which patients respond better to which
treatments?

e Optimal Treatment Rule (OTR)

e Learned based on data, can predict future treatments



Example Scenario

e Based on a measurable covariate, determine whether Benadryl or
Melatonin is a better sleep aid

o Y=..

o Some real number(representing time slept)
o A=...

o 0:Benadryl

o 1: Melatonin
e X_1,X_2,...X_d:manynumber of covariates that may affect drug

effectiveness
o Are some covariates more relevant than others?
o Are there covariates that are irrelevant?



Assumptions for Causal Inference

e Scenario 1: Experiment
o Randomized treatments
o No confounding, covariates don’t affect probability of
treatment



Assumptions for Causal Inference

e Scenario 2: Observational study
o Treatments are distinct
m E.g. medicine or placebo
o No unaccounted for confounding
o Nonzero probability of each treatment value



Q-Learning

e Propose model for expectation of outcome given covariates,
treatments
e Obtain coefficients through ordinary least squares or LASSO

E(Y|X,A) = by + b, X + A(by + b3 * X)

e Solve for coefficients to obtain rule
e Interpretable for simpler examples



Treatment Rule Example
e A=1,0

4 B — [b05b1:b23b3]

e X is blood melatonin level

E(Y|X; A) =by+ b X + A(be + b3 * X)



Treatment Rule Example

by + b3 X >0
bs X > —by

e Interpretation: treat if blood-melatonin level is below b_2/b_3



Least Sq uares e Find coefficients that

minimize the following

argming Z(BTa:i —5,)?
i=1




Least Squares Visualization

e “Bowl” shaped, convex
function

e Objective: find minimum
value of function
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Add regularization to
least squares function
Now, find coefficients

LASSO that minimize the

function

As regularization
increases, the L1 norm
matters more, thus
Increasing sparsity

argming Z(BT:::,- —:)* + A|B|lx
i1




LASSO Visualization

e Find another solution on the

“bowl”

o Still have the “bowl”

o Add a search space

o Find intersection
between search space
and least squares
function
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Let's Simulate! But ... Why?

e Accurately assess model accuracy
o True function for real data UNKNOWN
o Easily test multiple methods
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Simulation

Setup

Generate X, 1000 random
observations

Generate sparse B
Nonzero coefficients are

arbitrarily chosen

Plug into equation and add
random noise to generate Y
(training data)




Simulation e Train plain Q-learning with

OLS (Im) and with LASSO
(glmnet)

Estimate




Generate more test data with

- - true coefficient values
Simulation ) .
Predict from test observations
Evaluate Compare predictions to true

values




Simulation e Average accuracies:

o OLS:97.17%
o LASSO: 97.45%

Results
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Conclusion

Extensions:

e Multi-stage treatments
o  What happens if we want different, consecutive treatments?

e Adaptations to Observational Data
o How do we account for confounding mathematically?
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