
Learning Optimal Treatment 
Rules
Mentee: Max Bi
Mentor: Nina Galanter



Motivation

● Some subset of patients may respond better to one treatment 
as opposed to another

● How do we find which patients respond better to which 
treatments?

● Optimal Treatment Rule (OTR)
● Learned based on data, can predict future treatments
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Example Scenario

● Based on a measurable covariate, determine whether Benadryl or 
Melatonin is a better sleep aid

● Y = …
○ Some real number(representing time slept)

● A = …
○ 0: Benadryl
○ 1: Melatonin

● X_1, X_2, … X_d: many number of covariates that may affect drug 
effectiveness
○ Are some covariates more relevant than others?
○ Are there covariates that are irrelevant?
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Assumptions for Causal Inference

● Scenario 1: Experiment
○ Randomized treatments
○ No confounding, covariates donʼt affect probability of 

treatment
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Assumptions for Causal Inference

● Scenario 2: Observational study
○ Treatments are distinct

■ E.g. medicine or placebo
○ No unaccounted for confounding
○ Nonzero probability of each treatment value
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Q-Learning

● Propose model for expectation of outcome given covariates, 
treatments

● Obtain coefficients through ordinary least squares or LASSO

● Solve for coefficients to obtain rule
● Interpretable for simpler examples
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Treatment Rule Example
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Treatment Rule Example

● Interpretation: treat if blood-melatonin level is below b_2 / b_3
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Least Squares ● Find coefficients that 
minimize the following
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Least Squares Visualization

● “Bowl” shaped, convex 
function

● Objective: find minimum 
value of function
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LASSO

● Add regularization to 
least squares function

● Now, find coefficients 
that minimize the 
function

● As regularization 
increases, the L1 norm 
matters more, thus 
increasing sparsity
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LASSO Visualization

● Find another solution on the 
“bowl”
○ Still have the “bowl”
○ Add a search space
○ Find intersection 

between search space 
and least squares 
function
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Let’s Simulate! But … Why?

● Accurately assess model accuracy
○ True function for real data UNKNOWN
○ Easily test multiple methods
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Simulation
Setup

● Generate X, 1000 random 
observations

● Generate sparse B
● Nonzero coefficients are 

arbitrarily chosen
● Plug into equation and add 

random noise to generate Y 
(training data)
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Simulation
Estimate

● Train plain Q-learning with 
OLS (lm) and with LASSO 
(glmnet)
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Simulation
Evaluate

● Generate more test data with 
true coefficient values

● Predict from test observations
● Compare predictions to true 

values
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Simulation
Results

● Average accuracies:
○ OLS: 97.17%
○ LASSO: 97.45%
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Red dots correspond to true coefficient values
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Conclusion

Extensions:

● Multi-stage treatments 
○ What happens if we want different, consecutive treatments?

● Adaptations to Observational Data
○ How do we account for confounding mathematically?
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