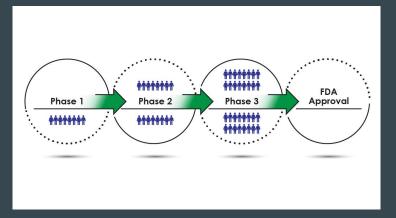
Infectious Disease Modeling-Looking at SIR Models

Anna Elias-Warren Mentor - Taylor Okonek SPA DRP Winter 2021

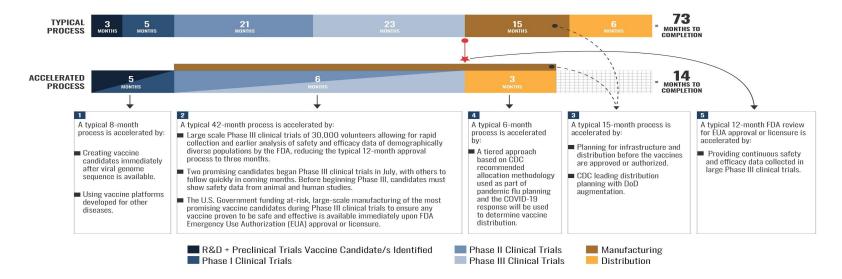
First a brief look at some main **Biostatistics topics we** discussed


Clinical Trials

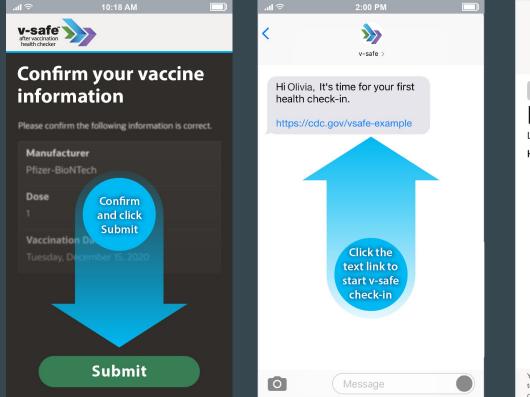
Phase I - Trying to figure out an appropriate dosagePhase II - Looking for immediate side effects and efficacyPhases III - Looking at efficacy and adverse reactions

Phase IV - Long term side effects and efficacy

Efficacy vs effectiveness


Ethical considerations: clinical equipoise

Clinical Trials for COVID-19 Vaccine



MISSION: Deliver 300 million doses of safe and effective vaccine by 1 January 2021.

Source: https://www.defense.gov/Explore/Spotlight/Coronavirus/Operation-Warp-Speed/

Phase IV for COVID-19 Vaccines

Voluntary

V-Sate after vaccination health checker

- Could lead to response bias
 - Is it also biased towards young tech-savvy people?

Source: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html

Survival Analysis

Time to event data, calculating risk of a certain outcome

- Event of interest is usually death
- Given that you've survived until time x, what is the probability that you survive until time y

Censoring - when a participant is lost to follow-up, drops out

Competing risk - when a different event (that conflicts someway) occurs before event of interest

• ex| death due to cancer vs death due to heart disease

Traditional survival methods assume that competing risks are independent/absent, but this is not always the case

Survival Analysis Example

= censored
= event of interest (death)

Jan	Feb	Mar	Apr	May	Jun	Jul	Jul
Patient 1 : 5	mo				7		
Patient 2 : 8	mo						
Patient 3 : 2	2 mo						
Patient 4 : 6 mo							
Patient 5 : 4	t mo			\$			

Can be complicated due to censoring (i.e. patient dropping out of study), people enrolling at different times, competing risks and some people not having the event of interest at all

Infectious Disease Models That We Discussed

- Wanting to play out the different courses disease spread could take
- Some main models
 - SIR Model*
 - Traveling Wave Solution
 - SIR Incubation Model

What does SIR stand for?

Susceptibles

Those in the population who are at risk of contracting the disease

Infectious

Those who have the disease and are actively contagious

Removed/Recovered

People who have already had the disease (or have been vaccinated) and cannot get it again

Could be due to antibodies or death

sometimes removed can go back to susceptible

Assumptions of an SIR Model

- The population of interest remains constant
- The rate of infection is proportional to the number of contacts
- There is a constant rate of death or recovery
 - Infectives recover/die at a constant rate

Key variables in SIR Model

R₀ - basic reproductive ratio

Looking at the number of secondary infections from a primary infection

Anything above 1 is considered an epidemic

R₀ for some diseases Flu: 1.9-2 COVID-19: 3-4 Measles: 12-18

q

Contact ratio

Proportion of population that comes into contact with an infectious individual, while the individual is infectious

Reducing q in the equations involved in SIR model is key to controlling the spread of a disease

Project objective: Create an SIR model in R to simulate different viral outbreaks

Some parameters to consider in our model

So what affects the transmission of a disease throughout a population?

- Are people wearing masks?
 - Those infected vs not infected wearing masks
- How far can the virus travel?
- What is the number of days someone is infected for?
- What is the general infection probability?
 - How inherently infectious is a virus?
- How many people are starting with the disease?

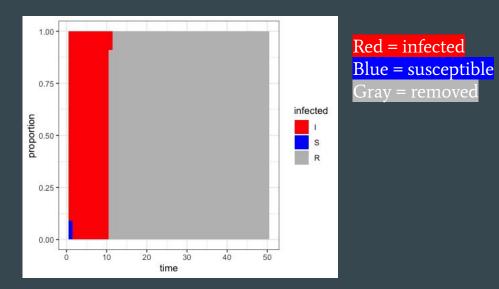
We had to code up our model...

Obstacle 1

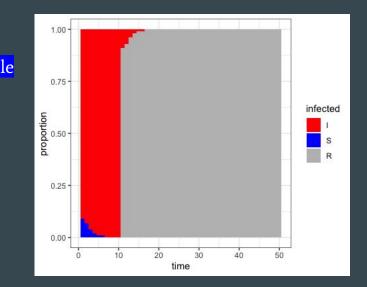
When we randomly move our 100 "people" we needed them to stay within the bounds of the graph (0, 1)

Obstacle 2

After moving the people, we had to create a new way to store that information without overriding the original information


Obstacle 3

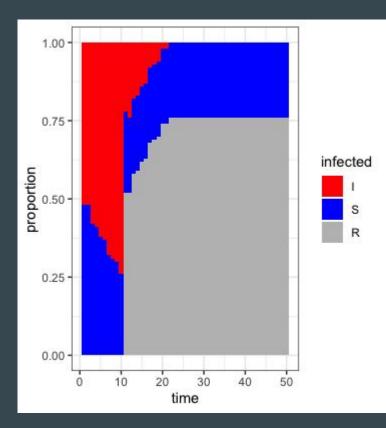
Including probability of transmission/infection based on mask usage


If sick but wearing a mask, probability of transmission reduced by 70%

If not sick and wearing a mask probability of infection is reduced by 80% Trying to make the **worst** possible scenario

First let's compare mask usage

Mask usage - 5%, Starting # infected - 15, Number of days infected - 10, Infect probability - 0.95, Virus can travel a distance of 0.1 units


Mask usage - 50%, Starting # infected - 15, Number of days infected - 10, Infect probability - 0.95, Virus can travel a distance of 0.1 units

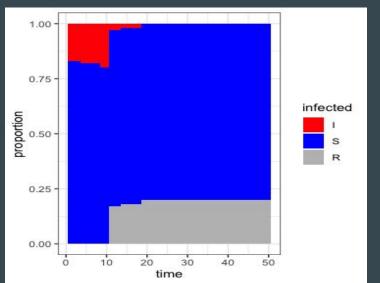
Masks seem to help slow the spread... slightly

Takeaway: Very infectious virus is difficult to contain, even with strong mitigation practices in place

Trying to make the best possible scenario

Trying to create better scenarios

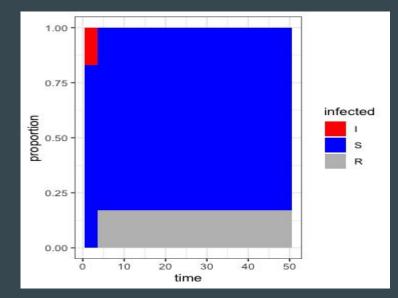
Mask usage - 95%


Starting # infected - 15

Number of days infected - 10

Infect probability - 0.50

Virus can travel a distance of 0.1 units


Changing a few parameters....

Mask usage - 95% Starting # infected - 15

Number of days infected - 10

Infect probability - 0.10

Mask usage - 95%

Starting # infected - 15

Number of days infected - 3

Infect probability - 0.10

Takeaway: Decreasing number of days infected helps to control the number of people infected

What we learned

For a worse case scenario:

- Increasing the distance a virus can travel
- Low mask usage
- High infection probability

Leads to the most infections in the population

For a best case scenario:

- High mask usage
- Low infection probability
- Small number of days infected
 - i.e. quarantining = less people infected

Leads to a more controlled outbreak, less total infections in the population

Shoutout to Taylor for all the help and guidance along the way :)