Multivariate Data Analysis

Lindsey Gao, mentored by Sarah Teichman

Background & Motivation

- Multivariate data: large data matrix => difficult to interpret
- Techniques for extracting what large data sets show us
- Simultaneous statistical analysis of a collection of variables, by using information about the relationships between the variables.
- Analysis of each variable separately is likely to miss key features and interesting patterns in the multivariate data

Chosen Dataset

-Retrieved NASA's Earth Science Data: The Compendium of Environmental Sustainability Indicator Collections

- 426 environmental sustainability indicators for 239 countries from 5 major data collection efforts between 2004-2006

-Collection compiled and distributed by the Columbia University Center for International Earth Science Information Network

Overview

- 1. Principal Component Analysis (PCA)
- 2. Multidimensional Scaling (MDS)
 - a. Classical Multidimensional Scaling (cMDS)
 - b. Non-Metric Multidimensional Scaling (nMDS)
- 3. Exploratory Factor Analysis (EFA)
- 4. Confirmatory Factor Analysis (CFA)
- 5. Cluster Analysis
 - a. K-Means Clustering
 - b. Model-Based Clustering

L. Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Goal: Reduce the dimensionality of data set while accounting for as much of the original variation as possible
- Transform original variables: $x^T = (x_1, \dots, x_q)$ to new set of uncorrelated variables (principal components): $y^T = (y_1, \dots, y_q)$ where

$$y_q \,=\, a_{q1} x_1 + \, a_{q2} x_2 \,+\, \dots \,+\, a_{qq} x_q$$

- Covariance/Correlation Matrix S: $S = A\Lambda A^T$

$$A = [ec{a_1}, ec{a_2}, \dots, ec{a_q}]$$

- Transform original data points in terms of eigenvectors that capture most of the variance $(\vec{a_1}, \vec{a_2})$ and plot on new axes with principal component 1 on x, and principal component 2 on y

2. Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

- Class of methods with similar goals as PCA to produce low dimensional visualizations of data
 - Operates on distance matrices instead of data matrix
 - Goal: Find a set of points in low dimension that approximate the high dimensional distance matrix

Classical MDS

- Inner product matrix of data:

 $\mathbf{B} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$

- Find B in terms of the of distances
- SVD matrix B => Coordinate axes are the 1st k eigenvectors multiplied scaled by corresponding eigenvalues

Non-Metric MDS

- Uses the rank order of the distances
- Find disparities

 $s.\,t.\,d_{ij}=\hat{d}_{\,ij}+\epsilon_{ij}$ Minimize stress function:

$$\mathrm{S}(\hat{X}) = \min \left(rac{\sum_{i < j} \left(\hat{d}_{\,ij} - d_{ij}
ight)^2}{\sum_{i < j} d_{ij}^2}
ight)$$

3. Exploratory Factor Analysis

Exploratory Factor Analysis

- Factor analysis: method used to uncover the relationship between assumed latent variables (factors) and manifest variables
- EFA: used to investigate the relationship between manifest variables & factors without making assumptions about which manifest variables relate to which factors
- Assume we have a set of observed/manifest variables: $x^T = (x_1, x_2, \dots, x_q)$ linked to k factors: $f_1, \dots, f_k s. t. \ k < q$ by a regression model: $x_1 = \lambda_{11} f_1 + \dots + \lambda_{1k} f_k + u_1$ Matrix Notation:

$$x_q = \lambda_{q1} f_1 {+} \ldots {+} \lambda_{qk} f_k {+} u_q$$

$$x\,=\,\Lambda f+u$$

Random disturbance terms u_i specific to x_i & uncorrelated with each other & factors

4. Confirmatory Factor Analysis (CFA)

Confirmatory Factor Analysis

- Postulate a specific factor model on data where you hypothesize that particular manifest variables are allowed to relate to particular factors while other manifest variables are constrained to have 0 loadings on some factors
- Usually perform EFA on part of data to form hypothesis & CFA on other portion to test hypothesis
 - *CFA must be performed on new data not used in EFA*
- CFA model parameters: covariances/variances of residuals & latent variables
 - bles $\theta = (\theta_1, \dots, \theta_t)^T$ Determines covariance matrix implied by the model: $\Sigma(heta)$
- Estimate parameters by minimizing discrepancy function

 - Ordinary least squares: Maximum likelihood*: $\begin{array}{l} \mathrm{FLS}(\mathrm{S},\Sigma(\theta)) = \sum_{i < j} \sum_{j} \left(s_{ij} \sigma_{ij}(\theta)\right)^2 \\ \mathrm{FML}(\mathrm{S},\Sigma(\theta)) = \log\left(|\Sigma(\theta)|\right) \log|S| + \operatorname{trace}(\mathrm{S}\Sigma(\theta)^{-1}) q \end{array}$

5. Cluster Analysis

Cluster Analysis

- Cluster analysis: generic term for many numerical techniques with the goal of uncovering groups of observations that are homogeneous & separated from other groups

Agglomerative hierarchical clustering (AGC)

K-Means

Goal: find partition of n individuals into k groups that minimizes the within group sum of squares (WGSS)

 $\sum_{j\,=\,1}^{q}\sum_{l\,=\,1}^{k}\sum_{i\in G_{l}}\left(x_{ij}-ar{x}^{l}
ight)$

Model-Based Clustering

Postulate a formal statistical model on population => results in overall population with finite mixture 2density => use maximum likelihood estimation to estimate parameters in finite mixture model

Credits

Special thanks to Sarah for mentoring me on this project!

- Textbook: <u>An Introduction to Applied Multivariate Analysis</u> with R
- Data:

https://sedac.ciesin.columbia.edu/data/set/cesic-complete-coll ection-v1-1

Shiny App: https://lindseygao.shinyapps.io/exploringmvdata/