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This paper introduces concepts and theories that I learned in the SPA DRP program, explains

them in real-life examples, and also demonstrates my own ideas and thoughts of understanding the

connections between networks and choice modeling.

1 Introduction

Choice is something that we will always encounter. In fact, our whole life is formed by countless

decision-making moments: from trivial matters such as which shirt to wear or which pizza to order,

to life-changing crossroads such as which career to take or even which person to marry to. It seems

so necessary for us to be able to pick the “right” option which will bring the greatest benefit. In
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choice models, this kind of benefit is defined as “utility”.

However, in most of the cases, it is difficult to tell whether an option is more beneficial than

another before the choice is actually made, especially when the difference between options are not

that large. Thus, here comes a genius idea – why don’t we build a model to work out and compare

the exact numerical value of the total utility of the system when each option is chosen, so that the

abstract decision-making is turned into a solid math problem? Thus, we come up with the idea of

“Discrete Choice Models”.

2 Discrete Choice Models

Discrete Choice Models, short for DCM, is a family of mathematical models which compare

the utility of each option in the system and figure out the probability that whether the option will be

chosen or not. By using the choice model, we are able to “obtain market-level predictions” by an-

alyzing the preference of specific customers, or “give forecasts over time” by gaining information

from previous data.

In this research, our exploration of Discrete Choice Models depends on the “Discrete Choice

Methods with Simulation” written by Kenneth Train. [1]

2.1 Properties

Here are some factors and properties that we need to know before building the model.

For any decision-making event, there are always two subjects – decision maker and choice set.

A decision maker can be you and me, or anyone who is going to make a choice, and the choice set is
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a set of alternatives that are possible to be chosen. The choice set in the DCM should follow three

characteristics: mutually exclusive, exhaustive, and finite. Mutual exclusiveness means that the

decision-maker can pick only one option from the choice set; exhaustiveness makes sure that any

possible alternative is included in the choice set so that the decision maker is necessary to choose

one option; to be finite means that there should be an upper limit of the number of alternatives in

the set, and that the set should be countable. The first two criteria are not restrictive—to achieve

different research goals, different definitions can be given to the choice set to meet the require-

ments. However, “finite” is restrictive and should never be changed, since DCM does not share the

same rules and results with the continuous choice models or those with infinite options—those are

not “discrete” at all.

To understand these criteria and restrictions, we can take a look at the example of two apples:

one is red, and the other is green. The question is, “between the two apples, which one do you

like better?” To meet exclusiveness and exhaustiveness, the alternatives should be “red only” and

“green only”. However, when the apples are put in the supermarket, and people have the right to

choose whatever product they want, then the alternatives should be defined as “red only”, “green

only”, “both red and green”, and “neither of them”. In this case, the situation is becoming more

complicated since it brings more questions like “how much people love apple more than other

fruits” and relative data should be available for further analysis. Therefore, the definition of the

choice set can be changeable and flexible to meet the first two criteria for different goals, though

most of the time there exists a tradeoff between these definitions. However, these are all based on

the “finite” characteristic, for which we have to count apples by a whole, or a combination, instead

of cutting them into pieces of countless different shapes and make each of them an option.
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2.2 Utilities and Probabilities

Utility, as we have just mentioned, is the usefulness of an alternative, or the benefit the alterna-

tive will bring if it is chosen. The utility of an alternative is decided by two kinds of factors: the

observed factors, denoted by the vector x; and the unobserved factors, whose effects all represented

by the variable ε .

Therefore, the utility function can be written as

U = β
′x+ ε (1)

, where represents the vector of parameters.

By using the utility function, we can then write the probability of the alternative being chosen

as

P =
∫

I[β ′x+ ε > 0] f (ε)dε

=
∫

I[ε >−β
′x] f (ε)dε

(2)

, where ε is assumed as distributed logistic, whose density written as f (ε) = e−β

(1+e−β )2 with cumu-

lative distribution F(ε) = 1
1+e−β

. The I here is an indicator function. When the statement in the

square is true, I = 1, otherwise I = 0. This shows that only when the utility is positive does it
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contributes to the probability of being chosen.

P =
∫

∞

ε=−β ′x
f (ε)dε

= 1−F(−β
′x)

= 1− 1
1+ eβ ′x

=
eβ ′x

1+ eβ ′x

(3)

, which turns out to be a logistic function.

This is the probability distribution for choosing one single item. However, when there are

multiple items in the same system, we need to conduct pairwise comparison on the utilities to

obtain the probabilities. In the common sense, people always would like to pick the option with

greater utility. The greater the utility is, the more likely it will be chosen. Therefore, we define

P(i→ j) = Prob(Ui >U j)

= Prob(Ui−U j > 0)
(4)

as the probability that option i beats j.

It also indicates that when doing pairwise comparison, “only differences in utility matter” and

that “the scale of utility is arbitrary”. These two statements will also be reminded later in section 4

at page 11

In fact, in reality, not all people prefer to choose the option with the greatest utility. To maxi-

mize the utility is only one of Discrete Choice Method. These models are called “Random Utility

Models”. Bradley-Terry-Luce (BTL) model is one of the RUMs, where the probability that the
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decision-maker chooses i over j is given by

P(i→ j) =
eUi

eUi + eU j

=
1

1+ e−(Ui−U j)

(5)

, which is obviously a logistic distribution. We will also come back to this in section 4. (equation

8)

3 Networks and Rankings

A network, by definition, is “a collection of vertices joined by edges”. [Network basics] A

network can also be represented by a graph G = (V, E), where V is the set of vertices, and E is

the set of edges. There are lots of different kinds of networks or graphs, such as simple graphs

and multigraphs; undirected graphs and directed graphs; cyclic graph or acyclic graph. Typically,

a network can be represented in three ways: the adjacency matrix, the adjacency list, and the edge

list. There are also some structural measures of networks, such as degrees, geodesic paths, and

clustering coefficients.

However, despite all these basic ideas of networks, what we truly pay attention to is the strong

function of the networks as a tool of ranking. It is true that discrete choice models are all what we

need to do pairwise comparisons of utilities, but when there exists a great number of options in the

choice set, it would be much more complicated and heavy work to work out and rank all the choice

probabilities. Thus, it would be perfect if we can find some connections between choice modeling

and networks—the natural ranking tool. In this chapter, we are going to talk about how rankings

of vertices in a network are measured, as well as three typical ranking methods.
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In this research, our exploration of Networks and Rankings depends on the “Network Analysis

and Modeling, CSCI 5352 Lecture Notes” by Clauset and Larremore. [2]

3.1 Measurement of Rankings: Structural Importance

For rankings in networks, the score of each vertex actually represents its importance level in this

system. And the importance level itself, in a static network with no dynamical process, depends

mostly on the position of the vertex in the network structure. This is what we called “Structural

Importance”.

Typically, the structural importance is defined by the centrality level of the vertex in the net-

work. The more central the vertex is, the more important it is. It is not hard to understand if we

think it as a real-life network, where each vertex represents a person, and each edge represents

the relationship between people. It would be not surprising to find that in each network, there is

someone who knows a lot of people, and thus gathers everyone together as the core of the group,

while there is also someone has few links with other members in the group, and thus is relatively

isolated near the margin of the network. Therefore, the cores, with higher centrality, have greater

importance than the isolates in network structure. Moreover, we can also find that the centrality

level has something to do with the relationships a person has. The stronger the relationships are,

and the higher the quantity is, the more important the person is. Therefore, in the next section, we

focus mostly on the weight and degree to work out the function of ranking score.

3.2 Three Ranking Methods by Structural Importance

In this section, we are introducing three typical ranking methods depending on structural im-

portance: degree centrality, eigenvector centrality, and PageRank.
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Figure 1: (a) degree centrality: k/m (b) eigenvector centrality: x(t+1)
i = ∑

n
j=1 Ai jx

(t)
j (c) PageRank: xi =

α ∑
n
j=1 Ai j

x j
kout

j
+β [2]

The degree centrality is the simplest one of the three ranking methods. It depends only on the

proportion of the degree a vertex has out of the total degrees. It can only be used for undirected

graphs.

The eigenvector centrality uses the recursive method to get the final score of each vertex. At

first, each vertex is given a same beginning score, which is usual very small, like “1”. Then the

iterations begin and each vertex keeps giving each of its neighbors the value of its score times the

weight of the edge. In each iteration, each vertex sums up their score from last iteration and the

scores given by their neighbors. And when the score of each vertex converges to a fixed number,

we get the final ranking scores.

The PageRank is something that we will definitely encounter when we are using search engines,

like Google. In this system, we can view each net page as a node and each hyperlink on the page

as an edge. When we click on the hyperlink, we trigger the edge and it will direct us to another

page. Since this is a one-way direction, it is not hard to understand that the PageRank applies to

directed graphs. Its algorithm is a bit similar to that of the eigenvector centrality. However, since

the edges are directed in this case, each vertex gives its original scores away through its out-going

edges by equal proportion, and receives new scores from its in-coming edges.

The following scatter plots show that there is positive correlation between any two of the three
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ranking methods. From the graphs (figure 1), plots (figure 2), and table (figure 3), we can see that

these ranking methods have similar effects and results. [2]

Figure 2: Scatter Plots

Figure 3: Table

However, since these ranking methods depends mostly on degrees and geodesic distances, we

can get only very coarse ordinary rankings, but the score itself has no actual meaning, and thus

cannot represent the utility of an option. It seems that it does not make any sense if we use these

networks with rankings to represent the distribution of utility models. Then how can we come to

the reconciliation?

Fortunately, we find the SpringRank.
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Figure 4: Spring System

4 Reconciliation: SpringRank

SpringRank is a ranking method based on a physical system of springs. (See figure 4) In the

system, each small light ball represents a vertex, and each spring connecting two balls represents

the edge between the vertices. The ranking score of a vertex depends on its energy. The energy

between the two vertices can be represented by this function: [3]

Hi j =
1
2
(si− s j−1)2 (6)

, where si–s j represents the distance between vertex i and j. It shows that we can change the energy

of the system by changing the distance between vertices. Therefore, by summing up the partial

energies, we can get the total energy of the system: [3]

Hi j =
N

∑
i, j=1

Ai jHi j =
1
2

N

∑
i, j=1

Ai j(si− s j−1)2 (7)
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When we minimize the total energy of the system, we can get the most stable status of the system,

from which we get the optimal rankings of the vertices. With Boltzmann distribution, we can get

that the probability of i beating j has the following distribution function: [4]

P(i→ j) =
e−βHi j

e−βHi j + e−βH ji

=
1

1+ e−2β (si−s j)

(8)

Which turns out to be another logistic distribution! Compared to the BTL model (equation 5), we

can see that they have very similar structures, and the probabilities all depends on difference. Since

the ranking score depends on energy of the system, it has some actual meanings, and thus is likely

to represent the utility in DCM.

5 Conclusion

In this program, I learned the basic concepts and properties of Discrete Choice Model and

Networks, looked into the ranking theories, and finally find the reconciliation between networks

and choice modeling – the SpringRank. My mentor and I also tried hard to explain all the ideas

in real-life examples to dig their realistic meanings. However, we still need more research to

explore the relationship between SpringRank and DCM. Moreover, as the old saying goes, “all

roads lead to Rome”. SpringRank might not be the only way of connecting networks and choice

modeling. Is there any other ranking method that works even better than SpringRank? Is there still

any connection between networks and choice modeling if the choice model is continuous? There

are still way more questions to answer and a long way to go in this young field.
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