# Bayesian perspectives on statistical modeling



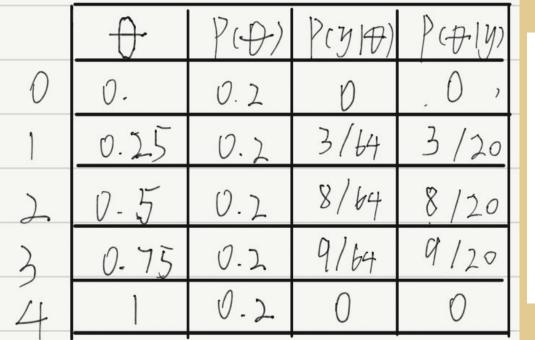


## What's Next

In the next 5 to 10 minutes, I will...

- > What's Bayesian?
- > Essential difference between Frequenist and Bayesianist
- > Advantage of Bayesianist over Frequentist
- > Model example of covid death rate in Washington State

# What's Bayesian Statistics


Let's say we have a bag contains 4 marbles in blue and white. we take 3 marbles out of bags. They are blue, white, and blue respectively. What is the proportion of blue balls?



# Suppose we have y as observed data vector(Blue, white, blue), Θ is the parameter of model, then we have

- A actual proportion of blue marbles, O, is usually called a parameter value.
- The previous belief about before we see the data is usually called the prior probability. P(O)
- The relative possibility that a value Θ can produce the data is usually called a likelihood. P(y | Θ)
- > The new, updated plausibility of any specific  $\Theta$  is usually called the posterior  $P(\Theta | y) \propto P(y | \Theta) P(\Theta)$





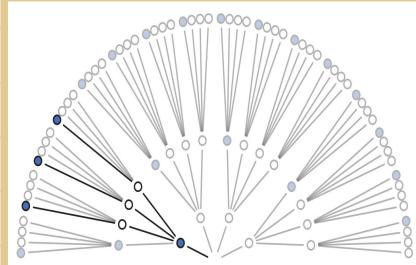
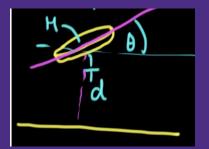




Image adapted from Statistical Rethinking, Rechard McElreath



# **Frequentist/Bayesian Divide**

### What's probability?



- Fundamentally related to the frequencies of repeated events.
  -Frequentists
- Fundamentally related to our certainty or uncertainty of events.
  Bayesian.

## **C**ovid death rate in Washington State

## data:

1, We collect the data for the first 40 days in 2022 from USAFACTS.

2, Correcting data to reflect that deaths lag behind cases

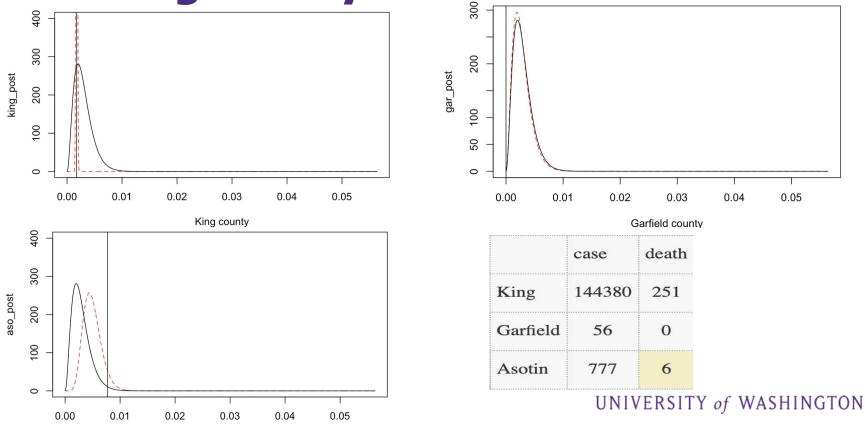
|   | State | County Name     | State | 2022_case | 2022_death | CFR                   | wa_cfr                |
|---|-------|-----------------|-------|-----------|------------|-----------------------|-----------------------|
| 0 | WA    | Adams County    | WA    | 1011      | 0          | 0.0                   | 0.0029403503844398400 |
| 1 | WA    | Asotin County   | WA    | 777       | 6          | 0.007722007722007720  | 0.0029403503844398400 |
| 2 | WA    | Benton County   | WA    | 12216     | 32         | 0.0026195153896529100 | 0.0029403503844398400 |
| 3 | WA    | Chelan County   | WA    | 4622      | 10         | 0.0021635655560363500 | 0.0029403503844398400 |
| 4 | WA    | Clallam County  | WA    | 3662      | 29         | 0.007919169852539600  | 0.0029403503844398400 |
| 5 | WA    | Clark County    | WA    | 24268     | 111        | 0.0045739245096423300 | 0.0029403503844398400 |
| 6 | WA    | Columbia County | WA    | 71        | 4          | 0.056338028169014100  | 0.0029403503844398400 |
| 7 | WA    | Cowlitz County  | WA    | 4452      | 32         | 0.0071877807726864300 | 0.0029403503844398400 |



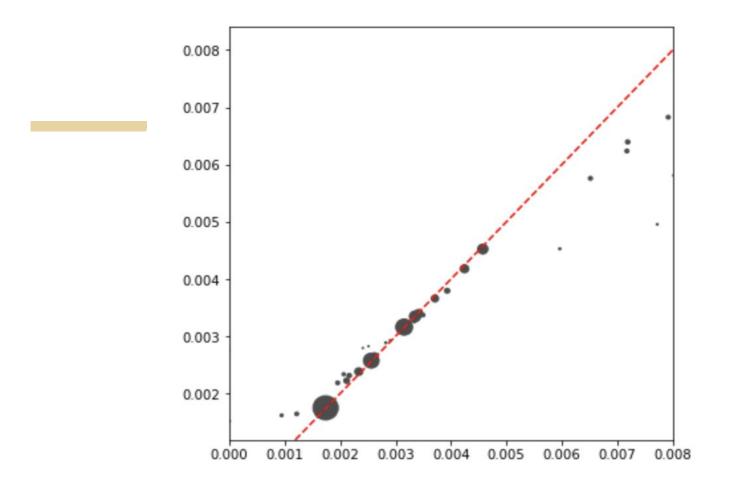
# The model

### Likelihood Prior distribution

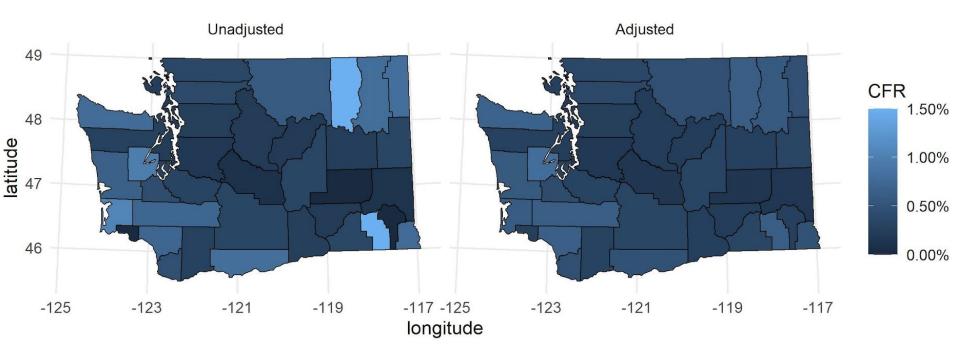
#### how do we choose a and b?


Choose a and b so that mean of prior = mean of data, variance of prior = variance of data mean of beta dist: a / (a+b), variance of beta:  $ab/(a+b)^2(a+b+1)$ we get a = 3.177, b = 1077

Posterior mean:


$$E[-\theta_i] datu] = \frac{a + death_i}{a + b + cases_i}$$

UNIVERSITY of WASHINGTON


# **Advantage of Bayesian**



Asotin county







**Note**: For any county where the unadjusted CFR was above 1.5% (0.015), we replaced it with 1.5% so that the map scales could be compared.

