
DRP Winter 2022: Statistical
Simulations
Disclaimer: These aren’t slides! Because this topic requires showing a lot of mathematical
notation, my slides are of the form of a knitted Rmd file.

Methods of obtaining independent and identically distributed random samples for both
continuous and discrete random variable.

Motivation: If we have some kind of computer program, we can ask it to generate any type of
distribution we want it to generate, exponential distribution, normal distribution, gamma
distribution, but behind the scenes the computer is doing something to generate numbers
from that distribution.

Why Sampling? Lack of closed form solution for expectations. Example: estimating the
integral of a function that does not have a closed form solution.

The building block of computational simulation is the generation of uniform random numbers.
If we can draw from , then we can draw from most other distributions. Thus the
construction of sampling from U(0, 1) requires special attention. Computers can generate
numbers between , which although are not exactly random (and in fact deterministic),
but have the appearance of being U(0, 1) random variables. These draws from  are
pseudorandom draws.

Pseudorandom number generator

The goal in pseudorandom generation is to draw

Multiplicative congruential method

1. Set the seed  and select positive integers  and .
2. Set  mod m.
3. Return the sequence .

Also note that after some finite number of steps < , the algorithm will repeat itself, since
when  seed  is set, a deterministic sequence of numbers follows.

Now we see an R example with  and .

m <- 2^31 - 1 

a <- 7^5 
x <- numeric(length = 1000) 

x[1] <- 7 
 

for (i in 2:1000){ 
  x[i] <- (a*x[i-1]) %% m 

} 

par(mfrow = c(1,2)) 
hist(x/m) 

plot.ts(x/m) 

So we can see that the resulting samples generated are in fact uniform. The left graph shows
the distribution of numbers generated from U(0,1) and the left shows the value of the number
generated over time and since we can see no clear trend between the number generated and
time, we can say that it is random.

Estimating complicated integrals
Consider the integral

The above integral does not have a standard analytical form. But we are interested in
calculating . We will turn this mathematical problem into a statistical problem.

If we can get  iid draws  from Unif , then we can estimation  using

repeats <- 1e4 
 

## Unif(0,1) case 
U <- runif(repeats) 

mean(exp(exp(U)))

## [1] 6.304136

We have our set of random numbers, our uniform distribution, so now we can use the uniform
distribution as a basis for generating the distribution we want

Simulation Methods
– Inverse transform

– Accept-reject

Discrete Random Variables

Examples of discrete distributions include Bernoulli, Poisson, Geometric, etc. To draw random
samples from such a discrete distribution, we will study the following methods

Inverse transform

Suppose  is a discrete random variable with the probability density function

Algorithm:

1. Draw 
2. if , then
3. 
4. else if , then
5. 
6. 

7. else if , then

8. 
9. 

We generate a random number U, and find the interval which U lies on based on the
probabilities of p

Example (Poisson distribution): We are going to draw samples from Poisson  where 
.

n <- 1000 ## sample size 

lam <- 4 ## 
samp <- numeric(n) 

for (t in 1:n){ 

  u <- runif(1) 
  i <- 0 

  p <- exp(-lam) 
  f <- p 

  while(u >= f){ 
    p <- (lam*p)/(i+1) 

    f <- f + p 

    i <- i+1 
  } 

  samp[t] <- i 
} 

hist(samp, xlab = "Samples")

Accept-reject

Although we can draw from any discrete distribution using the inverse transform method, you
can imagine that for distributions on countably infinite spaces (like the Poisson distribution),
the inverse transform method may be very expensive. In such situations, acceptance-
rejection sampling may be more reliable.

For accept-reject, suppose we have an efficient method for generating a random variable
having pmf q, we can use it as a basis for simulating p. By first simulating a random variable
Y having mass function q and accepting this simulated value with a probability proportional to
py/qy

Let  denote the pmf of the target distribution with Pr  and let  denote
the pmf of another distribution with Pr . Suppose you can efficiently draw from 

 and you want draw from . Let  be a constant such that

for all  such that . If we can find such a  and , then we can implement an
Acceptance-Rejection or Accept-Reject sampler. The idea is to draw samples from  and
accept these samples if they seem likely to be from .

Algorithm:

1. Draw .
2. Simulate  with pmf .

3. If  then,

4. Return  and stop
5. Else
6. Go to step 1.

Example (Binomial Distribution): In the following code, we draw samples from a Binomial(
) using the proposal distribution as Geometric( ) in the AR method. Here we take 

 and .

## this function samples ONE sample using AR 
 

draw_binom <- function(n, p) 
{ 

accept <- 0 
x <- 0:n 

all_c <- choose(n,x) * (1-p)^(n - 2*x) * p^(x-1) 

c <- max(all_c) + .001 # final c with slight increase for numerical sta
bility. 

 
while(accept == 0) 

{ 
U <- runif(1) 

prop <- rgeom(1, prob = p) #draw proposal 

ratio <- dbinom(x = prop, size = n, prob = p)/(c* dgeom(x = prop, prob
 = p)) 

 
if(U < ratio) 

{ 
accept <- 1 

rtn <- prop 
} 

} 

 
return(rtn) 

} 
 

 
N <- 1e3 # sample size 

samp <- numeric(N) 

for(t in 1:N) 
{ 

samp[t] <- draw_binom(n = 10, p = .25) 
} 

hist(samp, xlab = "Samples") 

Miscellaneous methods

We can also take advantage of relationships between distributions.

1. Binomial Distribution: We know that if  Bern(p), then

Now let’s try to get 1000 samples from Bin(10, 0.6) using R. 

So, we can simulate  Bernoulli variables, add them up, and we have a realization from a
Binomial .

Continuous Random Variables

The same methods as above but sampling continuous random variables instead. We will
discuss three sampling methods for continuous random variables.

1. Accept reject
2. Inverse Transform
3. Importance Sampling

Example: Accept reject for Beta distribution (2,4) (continuous)

AR_5d <- function() 
{ 

  accept = 0 
  counter = 0 

  c = 135/64 
  while(accept==0){ 

    counter = counter + 1 

    U_1 = runif(1) 
    U_2 = runif(1) 

    ratio = (256/27)*U_1*(1-U_1)^3 
    if(U_2 <= ratio){ 

      accept = 1 
      return(c(U_1, counter)) 

    } 

  } 
} 

 
 

N <- 1e4 
samp <- numeric(length = N) 

counts <- numeric(length = N) 
for(i in 1:N) 

{ 

  temp <- AR_5d() 
  samp[i] <- temp[1] 

  counts[i] <- temp[2] 
} 

 
x <- seq(0, 1, length = 500) 

plot(density(samp), main = "Estimated density from 1e4 samples") 

lines(x, dbeta(x, shape1 = 2, shape2 = 4), col = "red", lty = 2) 
legend("topleft", lty = 1:2, col = c("black", "red"), legend = c("AR", 

                                                                 "trut
h"))

Example: Inverse Transform for Exp( ), 

N <- 1000 
lambda <- 5 

U <- runif(N) 
X <- - (1/lambda) * log(1 - U) 

hist(X, main = "Histogram of Exponential distribution")

Importance sampling
Suppose we want to estimate the expectation of the function  where . In a
scenario where  is nearly zero outside of the region  belonging to the domain of
random variable  drawing samples directly from  may infact not be a good idea to
estimate . A plain Monte Carlo sample from the distribution of  could fail to have
even one point inside the region . The problem of estimating the expectation of such
functions is of significance in applications like nuclear physics, finance, insurance, etc.

Therefore, we instead want to sample from a distribution that can give samples that are more
representative of the region . We do this by sampling from a distribution that overweights
the important region, hence the name importance sampling. This distribution is called the
proposal distribution and we are going to denote it by  with density function .

Suppose we are interested in estimating the expectation of a function  with
respect to . That is, we want to estimate

We assume that  is finite. Consider a proposal distribution with density . We will
instead construct an estimator that draws samples from  and uses them to estimate .

Simple Importance Sampling

Consider

Therefore if  are samples from , then an estimator for  is

The estimator  is the importance sampling estimator, the method is called simple
importance sampling and  is the importance distribution.

Example: Gamma distribution: We want to estimate the second moment for a gamma
distribution using an exponential distribution as the proposal. That is , 

 and .

alpha = 2 
beta = 5 

k = 2 
truth = alpha/beta^2 + (alpha/beta)^2 

 
lambda = 3 

N = 1e4 

samp = rexp(N, rate = lambda) 
func = samp^k * dgamma(samp, shape = alpha, rate = beta) / dexp(samp, r

ate = lambda) 
est = mean(func) 

print(paste("Truth: ", truth, "Estimate: ", est))

## [1] "Truth:  0.24 Estimate:  0.244696886245796"

The true expectation and thesimple importance sampling estimate we got from sampling from 
 are pretty close!

Weighted Importance Sampling

Often for many distributions, we do not know the target distribution fully, but only know it up to
a normalizing constant. That is, the target density is

for some unknown constant  and the proposal density is

for some unknown constant . Suppose the same  is of interest. Since  and  are unknown,
we can’t evaluate  and . So if we can estimate  and  as well, that will allow us
estimate . Instead, we will estimate , which also works!

Consider samples  from , then the weighted importance sampling estimator for
 is

Optimal Proposal for Importance Sampling

How do we choose the importance distribution ? Note that, one reason to use importance
sampling would be to obtain smaller variance estimators than the original. So, if we can
choose  such that the variance of importance samples is minimized that would be ideal. Let 

 denote the variance of importance samples

Theorem 1: The density  that minimizes  is:

as long as .

Now for the same Gamma distribution example, we try to find the optimal proposal. Recall 
 and . Using the theorem above

This shows that the optimal proposal would be .

In the following code, we calculate the importance sample estimate of  firstly using 
 and then using the proposal . We will show

how the variance of importance samples is significantly smaller in the latter case.

########################################### 

### Optimal importance sampling from Gamma 

########################################### 
 

set.seed(1) 
# Function does importance sampling to estimate second moment of a gamm

a distribution 3 
imp_gamma <- function(N = 1e3, alpha = 4, beta = 10, moment = 2, imp.al

pha 

= alpha + moment) 
{ 

fn.value <- numeric(length = N) 
draw <- rgamma(N, shape = imp.alpha, rate = beta) # draw imporance samp

les 
fn.value <- draw^moment * dgamma(draw, shape = alpha, rate = beta) / 

dgamma(draw, shape = imp.alpha, rate = beta) 
return(fn.value) #return all values 

} 

N <- 1e4 
# Estimate 2nd moment from Gamma(4, 10) using Gamma(4, 10) 

# this is IID Monte Carlo 
imp_samp <- imp_gamma(N = N, imp.alpha = 4) 

mean(imp_samp)

## [1] 0.2002069

# [1] 0.2002069 

var(imp_samp)

## [1] 0.04421469

# [1] 0.04421469 
# Estimate 2nd moment from Gamma(4, 10) using Gamma(6, 10) 

# this is the optimal proposal 
imp_samp <- imp_gamma(N = N) 

mean(imp_samp)

## [1] 0.2

# [1] 0.2 

var(imp_samp)

## [1] 9.620443e-33

# [1] 9.620212e-33 
# why is the estimate good 

foo <- seq(0.001, 5, length = 1e3) 
plot(foo, dgamma(foo, shape = 4, rate = 10), type= "l", ylab = "Densit

y", xlab = "X") 

lines(foo, dgamma(foo, shape = 6, rate = 10), col = "red") 
legend("topright", col = 1:2, lty = 1, legend = c("IID Monte Carlo", "O

ptimal importance sampling"))

This concludes the project report.

References: Ross, Sheldon M. Simulation. Academic Press, 2013.

U(0,1)

(0,1)
U(0,1)

, ,…, ∼ U(0,1) .x1 x2 xn

x0 a m

= axn xn−1

{ /m}xm

m

a x0

a = 75 m = − 1231

θ = exp{ }dx .∫
1

0
ex

θ

n { ,…, }x1 xn [0,1] θ

= exp{ } .θ̂
1

n
∑
i=1

n

exi

X

f(X = ) = j = 0,1,…n = 1xj pj ∑
j=1

n

pj

U ∼ Unif[0,1]
U < p0

X = 0
U < +p0 p1

X = 1
…

U < ∑j
i=1 pj

X = j

…

(λ)
λ = 4

{ }pj (X = ) =aj pj { }qj
(Y = ) =aj qj

{ }qj { }pj c

≤ c
pj

qj

j > 0pj { }qj c

{ }qj
{ }pj

U ∼ U[0,1]
Y = y qj

U <
py

cqy
X = y

n,p p

n = 10 p = 0.25

, , . . . ,Y1 Y2 Yn ∼iid

X = + +.. .+ ∼ Bin(n,p)Y1 Y2 Yn

n

(n,p)

λ λ = 5

h(X) X ∼ P

h(X) A

X P

E[h(X)] X

A

A

Q q(X)

h : X → R

p

θ = [h(X)] = h(x)p(x)dx .Ep ∫
χ

θ q(X)
q θ

[h(X)]Ep = h(x)p(x)dx∫
χ

= h(x) q(x)dx∫
χ

p(x)

q(x)

= [ ]Eq

h(X)p(X)

q(X)

,…,X1 Xn Q θ

=θ̂s
1

n
∑
j=1

n h( )p( )Xi Xi

q( )Xi

θ̂s
Q

h(x) = xk

P = Gamma(α,β) Q = Exp(λ)

q

p(x) = a (x)p~

a

q(x) = b (x)q~

b θ a b

p(x) q(x) a b

θ b/a

,…,X1 Xn Q

θ

= .θ̂w

∑
n
i=1

h( ) ( )Xi p
~ Xi

( )q~ Xi

∑n
i=1

( )p~ Xi

( )q~ Xi

q

q

σ2
q

q∗ σ2
q

(x) =q∗ |h(x)|p(x)

[|h(x)|]Ep

[|h(x)|] ≠ 0Ep

h(x) = xk P = Gamma(α,β)

(x)q
∗ ∝ |h(x)|p(x)

∝ |h(x)| (x)p~

= exp(−βx)xkxα−1

= exp(−βx) .xα+k−1

Gamma(α+ k,β)

θ

Q = Gamma(α,β) Q = Gamma(α+ k,β)


