Q-learning for Optimal Treatment Rules

Yuwen (Leah) Jia Mentor: Nina Galanter

Suppose we want to know...

- > Does caffeine increase work efficiency?
 - what about for someone who hasn't slept for 3 days? someone who can't consume caffeine?
 - who should / shouldn't drink caffeine?

OPTIMAL TREATMENT RULES

Our interest: apply treatment rule that is best for individuals

Causal inference conditions:

- 1. potential outcome matches observed outcome
- 2. no confounding
- positive probability of being assigned to each of the treatment levels

Q-Learning

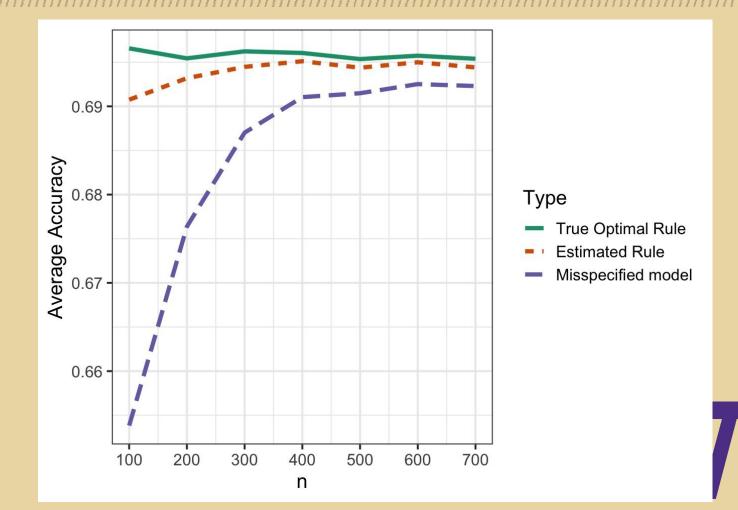
X: covariate
A: treatment
β: parameters

- 1. Outcome Y which we wish to maximize:
 - $Y = \beta 0 + \beta 1X + (\beta 2 + \beta 3X)A$
 - terms relate solely to the patient's information
 - interaction between patient and treatment A
- 2. obtain parameter estimates (β_2 , β_3)
- 3. estimate the optimal treatment decision rule
 - "Treat (A = 1) if $\beta_2 + \beta_3 X > 0$; no treatment (A = 0) otherwise."

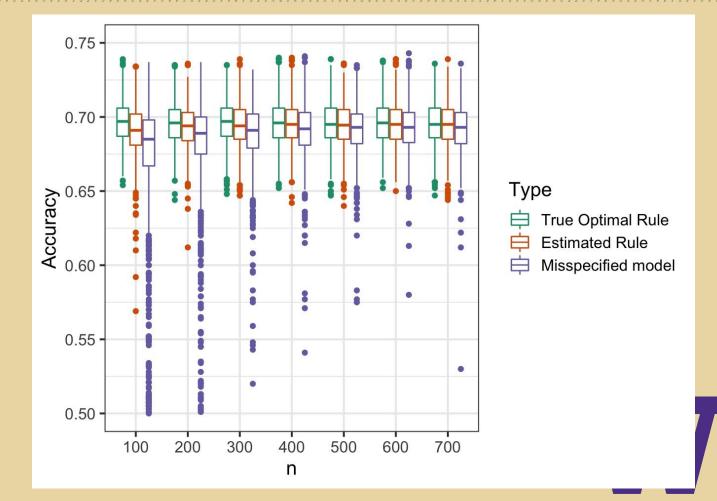
Simulation

- > evaluate the performance of our statistical methods
- > how do we use them:
 - generating data using random sampling
 - estimate outcome models using simulated data
 - Compare estimated rules to the true optimal rule

Simulation Setup (one of many ways)


- > assign n random X & random treatments (A=0, A=1)
- $> E[Y|X,A] = 0 + 1*X + (0 + 1*X)A + 1*X^2$
- > consider 3 models to compare:
 - the estimated rule

$$> E[Y|X,A] = \beta_0 + \beta_1 X + (\beta_2 + \beta_3 X)A + \beta_4 X^2$$


- a rule based upon a mis-specified model
 - > $E[Y|X,A] = \beta 0 + \beta 1X + (\beta 2 + \beta 3X)A$
- the true best rule (treat when X > 0)

Result

Result 2

Summary

- > Q-learning method:
 - Create a treatment rule without knowing the truth
 - Maximize the average outcome across all participants
- > disadvantage of q-learning:
 - vulnerable to model misspecification

sources: Hernán MA, Robins JM (2020). *Causal Inference: What If*.

Michael P. Wallace and Erica E. M. Moodie. *Adaptive Treatment Strategies in Practice*

