BAYESIAN STATISTICS

Mentor: Nicholas Irons Mentee: Qianqian Yu

Contents :

- 1. Basic idea about Bayesian
- 2. Three components of the Bayesian model: prior, likelihood, and posterior
- **3.** Latent Dirichlet Allocation (LDA) Model

Basic idea about Bayesian

Bayesian statistics is a mathematical procedure that applies probabilities to statistical problems. It provides people the tools to update their beliefs in the evidence of new data

Bayesian Model

- U.S. Census figures provide prior information about the region in which people might live: the Midwest (M), Northeast (N), South (S), or West (W)
- For drinks, we have common regional terms including "pop," "soda," and "coke."
- What is the distribution for different region use the term "pop"?

"U.S. Census figures provide prior information about the region in which they might live: the Midwest (M), Northeast (N), South (S), or West (W)"

- This is prior
- The information we know at first

TABLE 2.5: Prior model of U.S. region.							
region	М	Ν	S	W	Total		
probability	0.21	0.17	0.38	0.24	1		

For drinks, we have common regional terms including "pop," "soda," and "coke."

- This is data
- Eg. A boy who likely to use "pop", maybe he is from south
- Then we introduce
 - likelihood function: It indicates how likely a particular population is to produce an observed sample.

# Load the data								
data(pop_vs_soda)								
<i># Summarize pop use by region</i>								
pop_vs_soda %>%								
<pre>tabyl(pop, region) %>%</pre>								
<pre>adorn_percentages("col")</pre>								
pop midwest northeast south west								
FALSE 0.3553 0.7266 0.92078 0.7057								
TRUE 0.6447 0.2734 0.07922 0.2943								

By R

- A represent the use of "Pop"
- We can calculate likelihood Value:

 $L(M|A) = 0.6447, \quad L(N|A) = 0.2734, \quad L(S|A) = 0.0792, \quad L(W|A) = 0.2943$

posterior probability

A posterior probability, in Bayesian statistics, is the revised or updated probability of an event occurring after taking into consideration new information.

$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B)L(B|A)}{P(A)}$

BAYESIAN RULE

$posterior = \frac{prior \cdot likelihood}{normalizing constant}$

POSTERIOR CALCULATION

How we interpret posterior?

- A represent the use of "Pop"
- If we know one person use the term "Pop", the person most likely from the Midwest.

 $P(S|A) = rac{0.38 \cdot 0.0792}{0.2826} ~pprox 0.1065.$

region	М	N	S	W	Total
prior probability	0.21	0.17	0.38	0.24	1
posterior probability	0.4791	0.1645	0.1065	0.2499	1

Latent Dirichlet Allocation (LDA) Model

 LDA is a Bayesian model used in natural language processing (NLP) to extract topics from a corpus of text documents

Blueprint for the LDA machine

Probability of a document $P(W, Z, \theta, \varphi; \alpha, \beta) = \prod_{j=1}^{M} P(\theta_j; \alpha) \prod_{i=1}^{K} P(\varphi_i; \beta) \prod_{t=1}^{N} P(Z_{j,t} \mid \theta_j) P(W_{j,t} \mid \varphi_{Z_{j,t}})$ $\widehat{I}_{\text{topics}}$ $\widehat{I}_{\text{topics}}$

LDA

W --- words in document Z --- Latent topic θ - topic distribution φ - topic-word distribution α - per-document topic distribution(Dirichlet) β - per topic word distribution(Dirichlet)

Party • $\alpha = 1$ no preference

■ *α* < 1

movie, games, chips in the corner

 $\bullet \quad \alpha > 1$

tiger, wolf, in the corner

For document

 Point represents each document which contains different ratio of topics

Two Dirichlet distributions

Documents-Topics

Topics-Words

Implication of LDA model

- Analysis unstructured text data
- How about tweet?
- Find the most frequent topic

Thanks